Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Sunday, 22 June

Room: ICM Room 11Wesn 08:30 -- 10:00 S1F • Clinical and Preclinical Applications of Diffuse Optics I Presider: Wesley Baker; Children's Hospital of Philadelphia, USA

S1F.1 • 08:30 (Invited)

Non-Invasive Evaluation of Microvascular Impairment in Intensive Care Patients Through Near-Infrared Spectroscopy - the Multicenter HEMOCOVID-19 Trial: a Spotlight on Recruitment Center Effect on Measured Biomarkers, Lorenzo Cortese¹, Axel Masó², Marcel Morillas², David Busch³, Pedro Castro⁴, Antonio Luis Eiras Falcão⁵, Ricard Ferrer⁶, Giacomo Grasselli⁷, Umut Karadeniz¹, Judith Marin Corral⁸, Rickson Mesquita^{9,10}, Argelia Pérez Pacheco¹¹, Andrés Quiroga Soto^{1,9}, Leandro Utino Taniguchi¹², Marta Zanoletti¹, Jaume Mesquida¹³, David Romero², Turgut Durduran^{1,14}; ¹ICFO - Institut de Ciencies Fotoniques, Spain; ²CRM - Centre de Recerca Matemàtica, Spain; ³Department of Anesthesiology & Pain Management, Department of Neurology, Department of Biomedical Engineering, Univ. of Texas Southwestern, USA; ⁴Hospital Clínic De Barcelona, Spain; ⁵Clinical Hospital, Univ. of Campinas, Brazil; ⁶Vall D'Hebron Barcelona Hospital, Spain; ⁷Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy; ⁸Hospital del Mar-IMIM, Spain; ⁹Inst. of Physics, Univ. of Campinas, Brazil; ¹⁰School of Computer Science, Univ. of Birmingham, UK; ¹¹"Dr. Eduardo Liceaga", Hospital General De México, Mexico; ¹²Univ. of São Paulo Medical School, Hospital Das Clínicas, Brazil; ¹³Parc Taulí Hospital Universitari, Spain; ¹⁴Institució Catalana de Recerca i Estudis Avancats - ICREA, Spain. We present the latest results of the HEMOCOVID-19 trial, carried out in ten hospitals with the aim of measuring microvascular impairment through NIRS in intensive care COVID-19 patients. Here, we reveal the effects of recruitment site on measured parameters, and correlate microvascular health with mortality and early antiviral treatments

S1F.2 • 09:00

Measurement of Systolic and Diastolic Blood Pressure with Near Infrared

Spectroscopy, Anna Gerega¹, Stanislaw Wojtkiewicz¹; ¹IBIB PAN, Poland. The proposed method meets requirements to be the standard for measuring blood pressure due to its accuracy, robustness, pulse wave independence and implementation simplicity, making it ideal for all blood pressure devices, especially personal ones.

S1F.3 • 09:15

Estimation of Arterial Blood Volume Using Spatially Resolved Continuous-Wave

NIRS, Martin Goessweiner¹, Jingyi Wu¹, Jana M. Kainerstorfer¹; ¹*Carnegie Mellon Univ.*, *USA*. We present a novel approach for estimating arterial blood volume contributions to the differential path length factor using NIRS. By analyzing the slope of optical density at the heart rate, arterial pathlength changes are estimated.

S1F.4 • 09:30

Exploratory Study on Time Domain Approach for Pulse Oximetry Application, Suraj Kumar Kothuri^{1,2}, Pranav Lanka¹, Claudia Guadagno⁴, Stefan Andersson-Engels^{1,3}, Sanathana Konugolu Venkata Sekar^{1,4}; ¹*Tyndall National Inst., Ireland;* ²*Engineering Sciences, Univ. College Cork, Ireland;* ³*Physics, Univ. College Cork, Ireland;* ⁴*BioPixS Ltd, Ireland.* This work is aimed to explore and assess the feasibility of time domain approach for pulse oximetry application. We employ high density, NIRS device (Kernel Flow) to record PPG signals from

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

various parts of human body.

S1F.5 • 09:45

Assessment of Lung and Peripheral Hemodynamics Through Time Domain Diffuse Optical Spectroscopy During Forced Breathing, Nicola Serra¹, Giulia Maffeis¹, Alessandro Bossi¹, Rinaldo Cubeddu¹, Antonio Pifferi¹, Paola Taroni¹; ¹Politecnico di Milano, Italy. In a pioneering attempt at probing lungs *in-vivo* with time-resolved diffuse optics, we investigated how deep breathing causes synchronous blood volume-related absorption oscillations locally (lungs) and in peripheral circulation (forearm).

Room: ICM Room 2 08:30 -- 10:00 S1A • Multiphoton Microscopy I Presider: Robert Szipocs; R&D Ultrafast Lasers Kft., Hungary

S1A.1 • 08:30 (Invited)

Widefield and Optically Sectioned Two-Photon Imaging of Biological Samples Using Random Illumination Microscopy (2P-RIM), Assia Benachir¹, Xiangyi Li¹, Eric M. Fantuzzi¹, Guillaume Giroussens¹, Thomas Mangeat², Luca Genchi¹, Federico Vernuccio¹, Hervé Rigneault¹, Anne Sentenac¹, Sandro Heuke¹; ¹Institut Fresnel, France; ²Centre de Biologie Intégrative, France. We present a widefield two-photon fluorescence technique for biological imaging. Using a random illumination microscopy scheme, we achieve 2?m axial resolution and a 1.7x improvement in lateral resolution over a field of view of 250?m.

S1A.2 • 09:00

High-Frame Rate Wide-Field Multiphoton Microscopy With a Temporal Focusing Scheme, Federico Vernuccio¹, Michal Marynowski¹, Xiangyi Li¹, Assia Benachir¹, Luca Genchi¹, Sandro Heuke¹, Anne Sentenac¹, Hervé Rigneault¹; ¹*CNRS, France.* We propose a temporal focusing scheme with galvo scanners to perform two-photon fluorescence and CARS microscopy of biological samples over an unprecedently large field of view (>300x300µm²) at >10 frames/s with 3.8µm optical sectioning ability.

S1A.3 • 09:15

Double-Clad Tapered Multi-Core Fibers for two-Photon Lensless Endoscopy, Luca Genchi¹, Matthias Hofer¹, Adrien Carron², Fatima El Moussawi², Aymeric Pastre², Remy Bernard², Damien Labat², Andy Cassez², Rosa Cossart³, Olivier Vanvincq², Geraud Bouwmans², Siddharth Sivankutty², Esben Ravn Andresen², Hervé Rigneault¹; ¹*Aix-Marseille Univ., CNRS, Centrale Med, Institut Fresnel, Marseille, France., France;* ²*Univ. Lille, CNRS, UMR 8523 PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France., France;* ³*INSERM, Aix-Marseille Univ., CNRS, INMED, Marseille, France, France.* We present a lensless endoscope based on a double-clad tapered multi-core fiber (MCF) that enables high-speed endoscopic multiphoton imaging. We compare different MCF designs and demonstrate two-photon excited fluorescence imaging on biological samples.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

S1A.4 • 09:30

SLIDE Multiphoton Microscopy of Green Fluorescent Dyes With 640 Frames per

Second, Stefan Meyer^{1,2}, Kimberley L. Goodwin¹, Tonio F. Kutscher¹, Sebastian Karpf¹; ¹Inst. of Biomedical Optics, Universität zu Lübeck, Germany; ²Medical Lasercenter Lübeck, Germany. This work presents first images of green fluorescent samples with an ultra-fast SLIDE multiphoton microscope. A new swept-source FDML-MOPA laser at 978 nm enables frame rates of 640 Hz and line rates of 160 kHz.

S1A.5 • 09:45

Noise Tolerant Inversion in Single Pixel Imaging for Biological Imaging, Avinash Upadhya^{1,2}, Emi C. Hughes¹, megan lim^{1,2}, Philip Wijesinghe³, Kylie Dunning^{1,2}, Kishan Dholakia^{1,3}; ¹Centre of Light for Life, School of Biological Sciences, Univ. of Adelaide, Australia; ²Robinson Research Inst., School of Biomedicine, The Univ. of Adelaide, Australia; ³SUPA, School of Physics and Astronomy, Univ. of St Andrews, UK. Compressive sensing (CS) in optical microscopy promises imaging with fewer samples and thus lower photodamage. However, microscopy is often challenged by noise. We explore the effects of noise on CS reconstruction across various sampling schemes.

Room: ICM Room 3

08:30 -- 10:00 S1B • Ocular Imaging

Presider: Yoshiaki Yasuno; Univ. of Tsukuba, Japan

S1B.1 • 08:30 (Invited)

Transmission Interference Microscopy of the in Vivo Anterior Human eye, Samer Alhaddad^{1,2}, Wajdene Ghouali³, Christophe BAUDOUIN³, Albert Claude Boccara¹, Viacheslav Mazlin^{1,3}; ¹Langevin Inst., ESPCI, France; ²SharpEye, France; ³Quinze Vingts National Ophthalmology Hospital, France. We demonstrate E. Abbe's interference principle in transmission microscopy for in vivo human eye imaging by controlling illumination at the back of the eye. This reveals high-contrast cellular details of the anterior eye and lens.

S1B.2 • 09:00

Bandwidth-Efficient Signal Acquisition for 21mm FOV Retinal OCTA, Sunhong Jeong^{1,2}, ByungKun Lee^{1,2}, Gyounghwan Kim^{1,2}, Tae Shik Kim³, Benjamin J. Vakoc³, William Oh^{1,2}; ¹Mechanical Engineering, Korea Advanced Inst of Science & Tech, Korea (the Republic of); ²KI for Health Science and Technology, Korea Advanced Inst of Science & Tech, Korea (the Republic of); ³Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, USA. We present wide-field retinal OCTA acquired with a 1 GHz signal bandwidth. A 4.73 MHz SPML-OCT system with concentric-circular scanning and automatic reference arm length adjustment enabled high-quality 21 mm FOV OCTA in five seconds.

S1B.3 • 09:15

Oblique Illumination Holographic OCT for Improving Resolution, Reducing Speckles and Objectively Correcting Aberrations, Nelson P. Klooster¹, Sarvesh A. Thakur¹, Dierck Hillmann¹; ¹*VU Amsterdam, Netherlands.* We demonstrate oblique illumination in a holographic full-field Fourier-domain optical coherence tomography (FF-FD-OCT) system. This approach allows us to determine and correct aberrations objectively, reduce speckle noise, and increase

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

the lateral resolution.

S1B.4 • 09:30

Optical Signal Discontinuity Zones of the Crystalline Lens in the Accommodating

Eye, Keerthana Soman¹, Grzegorz Gondek¹, Bartlomiej J. Kaluzny², Karol Karnowski³, Daniel Ruminski¹, Pablo Artal⁴, Ireneusz Grulkowski¹; ¹Inst. of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus Univ., Poland; ²Department of Ophthalmology, Collegium Medicum, Nicolaus Copernicus Univ., Poland; ³Inst. of Physical Chemistry, Polish Academy of Sciences, Poland; ⁴Univ. of Murcia, Spain. The study explores the morphological changes in the accommodating eye, using full-eye-length swept-source optical coherence tomography (SS-OCT) intergrated with an accommodation unit. We identify and analyze structural modifications to optical signal discontinuity (OSD) zones offering new insights into the dynamic behavior of the crystalline lens.

S1B.5 • 09:45

Towards Assessment of Retinal Morphological Changes via Instrument-Integrated OCT in Endo-Photocoagulation in a Porcine Eye Model, Dongyue Wu^{2,1}, Kevin T. George^{3,2}, Philipp Matten², Eleonora Tagliabue², Caglar Ataman¹; ¹Department of Microsystems Engineering, Univ. of Freiburg, Germany; ²Carl Zeiss AG, Germany; ³Leibniz Univ. Hannover, Germany. This study evaluates local retinal tissue thickness changes in ex vivo porcine eyes in endolaser photocoagulation using an instrument-integrated OCT sensor and compares results with conventional microscope-integrated OCT measurements.

Room: ICM Room 4a 08:30 -- 10:00 S1C • Optical Coherence Elastography Presider: Frederique Vanholsbeeck; Univ. of Auckland, New Zealand

S1C.1 • 08:30 (Invited)

Rapid Volumetric Strain Imaging Using Full-Field Swept-Source Optical Coherence

Elastography, Seweryn Morawiec¹, Matt Hepburn^{1,2}, Marta Skrok¹, Mateusz Maniewski^{3,4}, Lukasz Szylberg^{3,4}, Maciej Szkulmowski¹, Brendan F. Kennedy^{1,2}; ¹Inst. of Physics, Nicolaus Copernicus Univ., Poland; ²BRITElab, Harry Perkins Inst. of Medical Research, The Univ. of Western Australia, Australia; ³Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus Univ., Poland; ⁴Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof. Franciszek Lukaszczyk Memorial Hospital, Poland. We demonstrate full-field swept-source optical coherence elastography system achieving volumetric strain imaging rate of 2 Hz at 4 µm lateral sampling. Validation reveals notable mechanical contrast in silicone inclusion phantom and human prostate carcinoma tissue.

S1C.2 • 09:00

Visualization of Breast Cancer Using Multi-Parametric Optical Coherence

Elastography, Jiayue Li^{2,1}, Ken Foo^{2,1}, Rowan W. Sanderson^{2,1}, Renate Zilkens^{2,4}, Mireille Hardie³, Laura Gale³, Yen Yeow⁵, Celia Green⁶, Farah Abdul-Aziz⁷, Juliana Hamzah⁸, James Stephenson⁹, Ammar Tayaran⁹, Jose Cid Fernandez⁹, Lee Jackson⁹, Synn Chin⁹, Saud Hamza⁹, Anmol Rijhumal³, Christobel Saunders^{10,4}, Brendan F. Kennedy^{2,11}; ¹Department of *Electrical, Electronic & Computer Engineering, The Univ. of Western Australia,*

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Australia; ²BRITElab, Harry Perkins Inst. of Medical Research, Australia; ³PathWest, Fiona Stanley Hospital, Australia; ⁴Medical School, The Univ. of Western Australia, Australia; ⁵Systems Biology and Genomics Laboratory, Harry Perkins Inst. of Medical Research, Australia; ⁶PathWest, QEII Medical Centre, Australia; ⁷Hollywood Private Hospital, Australia; ⁸Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Inst. of Medical Research, Australia; ⁹Breast Surgery Unit, Fiona Stanley Hospital, Australia; ¹⁰Melbourne Medical School, The Univ. of Melbourne, Australia; ¹¹Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus Univ. in Torun, Poland. Optical coherence elastography (OCE) shows promise in intraoperative tumor margin assessment, but is limited by imaging artefacts. We demonstrate multi-parametric OCE, comprising four distinct OCE contrast mechanisms, for improved visualization of breast cancer.

S1C.3 • 09:15

Optical Coherence Elastography of Excised Human Prostate, Szymon Tamborski¹, Marta K. Skrok¹, Matt S. Hepburn^{1,2}, Jiayue Li², Mateusz Maniewski^{3,4}, Marek Zdrenka⁴, Adam Kowalewski^{4,5}, Lukasz Szylberg^{3,4}, Brendan F. Kennedy^{1,2}; ¹*Inst. of Physics, Nicolaus Copernicus Univ. in Torun, Poland;* ²*Department of Electrical, Electronic and Computer Engineering, Univ. of Western Australia, Australia;* ³*Department of Obstetrics, Gynaecology and Oncology, Nicolaus Copernicus Univ. in Torun, Poland;* ⁴*Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Lukaszczyk Memorial Hospital, Poland;* ⁵*Faculty of Medicine, Bydgoszcz Univ. of Science and Technology, Poland.* We applied compression optical coherence elastography to obtain elastograms of entire cross-sections of a fresh human prostate. Images of stress, strain, and Euler angle of principal compression reveal important details of the tissue micro-architecture and allow for tumor differentiation.

S1C.4 • 09:30

The Development of Anatomical Breast Tissue-Mimicking Phantoms for Optical Coherence Elastography, Farzan Navaeipour^{1,2}, Rowan W. Sanderson^{1,2}, Jiayue Li^{1,2}, Scarlett Rawlins^{1,2}, Matt Hepburn^{1,2}, Brendan F. Kennedy^{1,2}; ¹BRITElab, Harry Perkins Inst. of Medical Research, Australia; ²Department of Electrical, Electronic and Computer Engineering, The Univ. of Western Australia, Australia. We present novel breast tissue-mimicking phantoms for OCE

that accurately replicate invasive carcinoma and ductal networks at micro-scale resolution. Unlike existing phantoms, our phantoms enable studies of mechanical contrast formation in complex tissue structures.

S1C.5 • 09:45

Towards Combined Raman Spectroscopy and Polarisation-Sensitive Optical Coherence Tomography for Integrated Biochemical and Biomechanical Testing of Cartilage, Darven Murali Tharan^{1,2}, Cushla McGoverin^{1,2}, Marco Bonesi^{1,2}, Daniel Everett^{2,3}, Matthew Goodwin^{1,2}, Sue McGlashan⁴, Ashvin Thambyah³, Frederique Vanholsbeeck^{1,2}; ¹Department of Physics, The Univ. of Auckland, New Zealand; ²The Dodd Walls Centre for Quantum and Photonic Technology, New Zealand; ³Department of Chemical and Materials Engineering, The Univ. of Auckland, New Zealand; ⁴Department of Anatomy and Medical Imaging, The Univ. of Auckland, New Zealand. Cartilage behaviour under load involves a complex interplay of biomechanical and biochemical responses. We demonstrate the effectiveness of PS-OCT and Raman spectroscopy independently for studying cartilage under load and have developed a multimodal configuration.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 4b 08:30 -- 10:00 S1D • Clinical Imaging Presider: Chulhong Kim; Pohang Univ of Science & Technology

S1D.1 • 08:30 (Invited)

Automatic Quantification of Human Skin Anatomy and Microvasculature Biomarkers by Optoacoustic Mesoscopy With Machine Learning, Hailong He¹, Johannes Paetzold², Erik Riedel², Ulf Darsow², Vasilis Ntziachristos¹; ¹Helmholtz Zentrum München GmbH, Germany; ²Technical Univ. of Munich, Germany. We developed a deep learning-based framework to analyze and quantify morphological skin features recorded by RSOM (raster-scan optoacoustic mesoscopy) and extract imaging biomarkers for disease characterization. The automatic featurus were found to be strongly correlated to physician observations and histology.

S1D.2 • 09:00

Towards Obtaining Reliable Spectral Biomarkers of Breast Cancer in Multispectral Optoacoustic Tomography, Maximilian Bader^{2,1}, Benedict E. Mc Larney³, Katja Pinker^{5,6}, Jan Grimm^{3,4}, Dominik Jüstel^{1,2}, Vasilis Ntziachristos^{2,1}; ¹*Inst. of Biological and Medical Imaging*, *Bioengineering Center, Helmholtz Zentrum München, Germany*; ²*Chair of Biological Imaging*, *Central Inst. for Translational Cancer Research (TranslaTUM)*, School of Medicine and Health & School of Computation, Information and Technology, Technical Univ. of Munich, *Germany*; ³*Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center*, USA; ⁴Department of Pharmacology, Weill Cornell Medicine, USA; ⁵Department of Radiology, *Memorial Sloan Kettering Cancer Center*, USA; ⁶Department of Radiology, Columbia Univ. Vagelos College of Physicians and Surgeons, USA. Multispectral optoacoustic tomography (MSOT) allows non-invasive spectroscopic imaging of human tissue. We analyze the stability of MSOT spectra and investigate effects of spectral coloring to pave the way for in-vivo breast cancer monitoring with MSOT.

S1D.3 • 09:15

High Resolution Photoacoustic Imaging for Quantitative Severity Assessment and Treatment Monitoring in Inflammatory Skin Diseases Using Structural and Functional Biomarkers, Xiuting Li¹, Yik Weng Yew², Steven Tien Guan Thng², Malini Olivo¹, Dinish U.S¹; ¹A*STAR Skin Research Labs, Singapore; ²National Skin Center, Singapore. We report the integration of photoacoustic imaging derived biomarkers into clinical practice, offering a noninvasive, objective tool for assessing the severity of inflammatory skin diseases (atopic dermatitis and psoriasis) and monitoring its treatment efficacy.

S1D.4 • 09:30

Peripheral Vascular Photoacoustic Imaging Using a Portable Laser Diode, Anjali Thomas¹, Gijs van Soest¹, Francis Kalloor Joseph¹; ¹*Erasmus MC, Netherlands.* Portable, low-power photoacoustic imaging systems can be effective for clinical translation. We integrated a laser diode with a commercial system and successfully demonstrated in vivo peripheral artery imaging in human volunteers.

S1D.5 • 09:45

Multimodal Spectral Photoacoustic and Ultrasound Imaging for Endarterectomy Plaque Characterization, Eline Veldhuijzen¹, Camilo Cano¹, Marc van Sambeek^{1,2}, Richard G. Lopata¹, Min Wu¹; ¹Eindhoven Univ. of Technology, Netherlands; ²Catharina Ziekenhuis Eindhoven,

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Netherlands. This work presents a multimodal spectral photoacoustic-ultrasound tomographic imaging framework to improve carotid plaque vulnerability assessment through tissue characterization. Integrating enhanced blind spectral unmixing with US-based calcification detection enables accurate identification of plaque components.

Room: ICM Room 5 08:30 -- 10:00 S1E • Light Sources and More Presider: Lothar Lilge: Univ. Health Network, Canada

S1E.1 • 08:30

Fluorescence Method to Assess Aspiration Risk, Goro Nishimura¹, Kaito Wakamatsu², Takuji Koike², Yukio Yamada², Haruki Niwa², Yukihiro Michiwaki³; ¹Hokkaido Univ., Japan; ²The Univ. of Electro-Communications, Japan; ³Toho Univ., Japan. One major cause of death in highly aged people is pneumonia induced by pulmonary aspiration. Some exercises can reduce the aspiration risk, but there is no simple method to evaluate the performance of such exercises. In this study, we propose a simple fluorescence method to detect food residues in the pyriform sinus to assess the aspiration risk.

S1E.2 • 08:45

Validating Optoacoustic Temperature Determination for Retinal Laser Treatments With the Fluorescence dye ERthermAC, Eric Seifert³, Leonie Hoffmann³, Xi Zhang³, Lisa-Marie Frühauf³, Yoko Miura^{2,1}, Ralf Brinkmann^{3,2}; ¹Ophthalmology, Univ. of Lübeck, Germany; ²Inst. of Biomedical Optics, Univ. of Lübeck, Germany; ³Medical Laser Center Lübeck, Germany. Temperature dependent fluorescence of the dye ERthermAC was used to measure laser induced temperature rise on RPE/choroid/sclera explants during simultaneous optoacoustic temperature determination, already being in clinical approval. Both methods didn't show significant differences.

S1E.3 • 09:00

Eraser-Sized Broadband (3-20µm) Mid-Infrared

Passive Spectroscopic Imager for Every Life Space, Hibiki Yano¹, Daichi Anabuki¹, Ichiro Ishimaru²; ¹*Graduate School of Science for Creative Emergence, Kagawa Univ., Japan;* ²*Faculty of Engineering and Design, Kagawa Univ., Japan.* A phase shifter with a drive system combining a voice coil motor and a spring is proposed. We confirmed that this system can drive the motor at constant velocity and low speed.

S1E.4 • 09:15

Efficacy and Safety of 1940nm Fiber-Guided Diode Laser, Young-Seok Seo¹, Hong-Ju Han¹; ¹WONTECH Co., Ltd., Korea (the Republic of). In this study, we analyzed the penetration depth of tissues, photothermal effects, tissue denaturation, and thermal effects according to output power and irradiation time through preclinical studies applied to a 1940 nm diode laser using the developed fiber-optic catheter.

S1E.5 • 09:30

Ultrashort Laser Pulses for Application in Cancer Surgery, Rainer J. Beck¹, Tatiana Malikova¹, Ioannis Bitharas¹, Andrew Moore¹, Robert R. Thomson¹, Jonathan D. Shephard¹; ¹*Heriot-Watt Univ., UK.* We present the successful laser ablation of clinically

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

relevant tissue models using ultrashort laser pulses. The correlation of high-speed imaging of the ablation process with a histopathological analysis of the tissue morphology enables the optimisation of the tissue removal.

S1E.6 • 09:45

Influence of Fiber Diameter on Thulium Fiber Laser Lithotripsy, Kimberley Lühring¹, Natalie Bruhn², Lion Schützeck¹, Birgit Lange¹, Ralf Brinkmann^{1,2}; ¹*Medical Laser Center Lübeck, Germany;* ²*Inst. of Biomedical Optics, Univ. of Lübeck, Germany.* The influence of fiber diameter on stone dusting and retropulsion during lithotripsy was investigated in single-pulse experiments with BegoStones and a pendulum-setup. It was found that thinner fibers ensure less retropulsion without reducing material removal.

Room: ICM Room 11

10:30 -- 12:00 S2F • Clinical and Preclinical Applications of Diffuse Optics II Presider: Yoko Hoshi; Hamamatsu Univ. School of Medicine, Japan

S2F.1 • 10:30 (Invited)

Validation of a Simultaneous Cerebral Blood Flow and Electrophysiology Monitor for Language Acquisition in six-Month old Infants, Ibtissam Ghailan Tribak¹, Judit Ciarrusta Monzon², Chiara Santolin³, Fen Zhang⁴, Daniel Senciales¹, Susanna Tagliabue⁵, Osman Melih Can¹, M. Atif Yaqub¹, Judit Gervain^{6,7}, Nuria Sebastian Galles², Turgut Durduran^{1,8}; ¹*ICFO -Institut de Ciencies Fotoniques, Spain;* ²*Universitat Pompeu Fabra, Spain;* ³*Fundació de recerca Sant Joan de Déu, Spain;* ⁴*KU Leuven Libraries, Belgium;* ⁵*NIRx, Germany;* ⁶*CNRS and Université Paris Cité, France;* ⁷*Univ. of Padova, Italy;* ⁸*ICREA, Spain.* Functional diffuse correlation spectroscopy (fDCS) and electroencephalography (EEG) is proposed as a robust method to monitor neurovascular coupling underlying language acquisition in six-month-old infants, and, is validated.

S2F.2 • 11:00

Non-Invasive Optical Assessment of Central Venous Pressure in Children with Single-Ventricle Heart Defects, Wesley Baker¹, April Hurlock¹, Crystal Mcintosh¹, Hongting Zhao¹, Caitlyn Davis¹, Darci Anderson¹, Briston Bayle¹, Rika Goto¹, Caitlyn Mulvihill¹, Rodrigo Forti¹, Tiffany Ko¹, Brian White¹, Jennifer Lynch¹; ¹Children's Hospital of Philadelphia, USA. Children with single-ventricle heart defects experience elevated superior venous pressure after their Glenn surgery. We used diffuse correlation spectroscopy to measure a concurrent increase in intracranial pressure (ICP); ICP correlated with invasively measured venous pressure.

S2F.3 • 11:15

Monitoring Cerebral Vasoreactivity and Hemodynamics in Patients With Intracerebral Hemorrhage Over Time, Jacqueline Martínez García¹, Anna Ramos Pachón², Ana Aguilera Simón², Pol Camps Renom², Garbiñe Ezcurra Díaz², Carolina Fajardo Vega¹, Joan Miquel Fernández Vidal², Jonas Fischer², Cristina Gallego Fabrega², Marina Guasch Jiménez², Marta Izura Gómez², Lisa C. Kobayashi Frisk¹, Álvaro Lambea Gil², Alejandro Martínez Domeño², Indalecio Morán Chorro², Luis Prats Sánchez², Nuria Puig Grifol², Juan José Sánchez Fernández², Marta Zanoletti¹, Joan Martí Fabregas², Turgut Durduran^{1,3}; ¹ICFO - Institut de *Ciències Fotòniques, Spain; ²Hospital de la Santa Creu i Sant Pau, Spain; ³Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain.* This study investigates the use of hybrid diffuse

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

optics combining diffuse optical spectroscopy and time-domain near-infrared spectroscopy in patients with intracerebral hemorrhage to evaluate the association of optically derived parameters with clinical data and outcomes.

S2F.4 • 11:30

Diffuse Optical Spectroscopy to Study Changes in Mammary

Physiology During Pregnancy, Ana Boamfa¹, Thomas D. O'Sullivan², Nienke Bosschaart¹; ¹Univ. of Twente, Netherlands; ²Univ. of Notre Dame, USA. This study employs broadband Diffuse Optical Spectroscopy (DOS) to study the temporal haemodynamic changes in the breast during pregnancy. Findings reveal variations in tissue oxygenation and haemoglobin concentration, offering deeper insights into breast development.

S2F.5 • 11:45

Initial Non-Invasive in Vivo Assessment of Breast Density with Time Resolved Diffuse Reflectance, Nicola Serra¹, Giulia Maffeis¹, Vamshi Damagatla¹, Rinaldo Cubeddu¹, Antonio Pifferi¹, Paola Taroni¹; ¹*Politecnico di Milano, Italy.* Breast composition of 11 volunteers is measured using reflectance, broadband time-domain diffuse optical spectroscopy to optimize measurement protocols for breast density estimation, aiming to develop a non-invasive optical device for breast cancer risk assessment.

Room: ICM Room 2

10:30 -- 12:00 S2A • FLIM and Adaptive Optics Presider: Irene Georgakoudi; Thayer Engineering at Dartmouth, USA

S2A.1 • 10:30 (Invited)

A Comprehensive Strategy for Ultra-Fast FLIM: Up to 2 Photons per Period Without

Distortion, Gennaro Fratta¹, Valerio Gandolfi², Piergiorgio Daniele¹, Federico Simoni², Ivan Labanca¹, Andrea Farina³, Giulia Acconcia¹, Alberto Gola⁴, Cosimo D'Andrea^{2,5}, Ivan Rech¹; ¹Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy; ²Dipartimento di Fisica, Politecnico di Milano, Italy; ³Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ⁴Fondazione Bruno Kessler, Italy; ⁵Istituto Italiano di Tecnologia, Italy. By combining a pile-up correction methodology and a custom ultra-low dead time photodetector as Single-Pixel Camera, we achieve 20 fps in Fluorescence Lifetime Imaging Microscopy with photon count rates exceeding 200% of the excitation frequency.

S2A.2 • 11:00

Multispectral Fast FLIM Based on Compressive Sensing Single-Pixel Camera for Imaging of Biological Dynamic Processes, Federico Simoni¹, Valerio Gandolfi¹, Elisabetta Avanzi¹, Shivaprasad Varakkoth¹, Alberto Ghezzi¹, Andrea Costa², Nicola Lusardi², Fabio Garzetti², Enrico Ronconi², Gabriele Bonanno², Angelo Geraci², Stefano Santabarbara³, Anna Bosc^{1,4}, Andrea Pianetti⁴, Giuseppe Paternò^{1,4}, Guglielmo Lanzani^{1,4}, Alberto Dalla Mora¹, Laura Di Sieno¹, Andrea Farina⁵, Cosimo D'Andrea^{1,4}; ¹Department of Physics, Politecnico di Milano, Italy; ²Department of Electronics, Politecnico di Milano, Italy; ³Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Italy; ⁴Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Italy; ⁵Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy. A fast fluorescence lifetime imaging microscopy (FLIM) system using compress sensing and a single-pixel camera enables real-time imaging of biological dynamics.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Dual detection paths provide high-speed (20 fps) or multispectral measurements, enhancing biomedical analysis.

S2A.3 • 11:15

Multispectral Depth-Resolved Fluorescence Lifetime Microscopy Using Computational Imaging, Shivaprasad Varakkoth¹, Valerio Gandolfi¹, Federico Simoni¹, Serban C. Tudosie², Simon Arridge², Andrea Farina³, Cosimo D'Andrea^{1,4}; ¹Dipartimento di Fisica, Politecnico di Milano, Italy; ²Department of Computer Science, Univ. College London, UK; ³Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ⁴Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Italy. We present a wide-field 3D multispectral fluorescence lifetime imaging (λ FLIM) microscope combining compressive sensing, single-pixel camera, structured illumination and data fusion techniques in an integrated computational imaging approach to acquire multidimensional optically sectioned images faster.

S2A.4 • 11:30

Wavelens: a Novel Wavefront Shaping Assisted Illumination Device for in Vivo Fluorescence Imaging of Biological Specimens, Mikis Mylonakis^{1,2}, Evangelos Marakis¹, Athanasios Zacharopoulos¹, Maria Tampakaki^{3,4}, Angela Pasparaki⁵, Nektarios Tavernarakis^{5,4}, Dimitrios G. Papazoglou^{1,2}, Zacharakis Giannis¹; ¹*Inst. of Electronic Structure and Laser, FORTH, Greece; ²Materials Science and Engineering, Univ. of Crete, Greece; ³Inst. of Computer Science, Foundation for Research and Technology-Hellas, Greece; ⁴School of Medicine, Univ. of Crete, Greece; ⁵Inst. of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, a compact, microscope* objective-like wavefront-shaping optical device for tailored illumination in Light-Sheet Fluorescence Microscopy (LSFM). We characterize its performance and demonstrate superior in vivo imaging of fluorescent specimens compared to conventional optics.

S2A.5 • 11:45

A Practical Approach to Aberration Correction Using Deep Transfer Learning and Phase Diversity with Limited Experimental Data, Alexander Bentley¹, Janet Kok¹, Bowen Deng¹, Andrew Parkes¹, Michael Somekh¹, Amanda Wright¹, Michael Pound¹; ¹Univ. of Nottingham, UK. Adaptive Optics is a technique to improve image quality in the presence of optical aberrations. This study demonstrates the application of deep transfer learning to predict and correct aberrations with limited phase diverse experimental data.

Room: ICM Room 3 10:30 -- 12:00 S2B • Optoretinography Presider: Marinko Sarunic; Univ. College London, UK

S2B.1 • 10:30 (Invited)

Depth-Resolved Temporal Photoreceptors' Transfer Function Measured With Photopic Flicker Optoretinography (f-ORG), Piotr F. Wegrzyn^{1,2}, Slawomir Tomczewski¹, Maciej Wojtkowski¹; ¹*ICTER, Poland;* ²*Faculty of Physics, Univ. of Warsaw, Poland.* We present depthresolved study of the temporal transfer function for cones and rods, derived by flicker optoretinography (f-ORG) combined with Spatio-Temporal Optical Coherence Tomography (STOC-T).

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

S2B.2 • 11:00

Progress on Clinical Optoretinography Using Dual-Spectrometer OCT in Healthy Eyes and Eyes with Birdshot Chorioretinopathy, Arman Athwal², Colin Chu⁴, Ringo Ng³, Joey Huang¹, Yifan Jian³, Myeong Jin Ju⁵, Marinko Sarunic^{2,4}; ¹Simon Fraser Univ., Canada; ²Medical Physics and Biomedical Engineering, Univ. College London, UK; ³Casey Eye Inst., USA; ⁴Inst. of Ophthalmology, Univ. College London, UK; ⁵Univ. of British Columbia, Canada. We present progress on translating optoretinography (ORG) into the ophthalmic clinic. We have extracted ORGs from multiple patients with Birdshot Chorioretinopathy using a dual-spectrometer, clinically analogous OCT and aim to correlate ORG with disease features.

S2B.3 • 11:15

Progress in ORGs Acquisition by FF-SS-OCT Systems, Robert J. Zawadzki¹, Ewelina Pijewska^{1,2}, Denise Valente^{1,3}, Kari Vienola^{1,4}, Ratheesh K. Meleppat¹, Ravi S. Jonnal¹; ¹Univ. of California Davis, USA; ²Nicolaus Copernicus Univ., Poland; ³Universidade de Pernambuco, Brazil; ⁴Univ. of Turku, Finland. Progress in optoretinography (ORG), measurements of the light-evoked changes in retinal morphology, will be presented with a focus on the development and implementation of the FF-SS-OCT for humans and experimental animals (mice).

S2B.4 • 11:30

OCT Split-Spectrum Amplitude-Decorrelation Optoretinography in Age-Related Macular Degeneration, David Huang¹, Siyu Chen¹, Steve Bailey¹; ¹Oregon Health and Science Univ., USA. We provide initial demonstration of OCT split-spectrum amplitude-decorrelation optoretinography to map photoreceptor dysfunction over the central 3x3-mm macular area for the clinical evaluation of early to intermediate age-related macular degeneration.

S2B.5 • 11:45

Influence of Color Blindness on Intensity-Based Optoretinograms Recorded with Adaptive Optics Scanning Laser Ophthalmoscope, Julia Granier^{1,2}, Elena Gofas Salas^{1,2}, Kate Grieve^{1,2}; ¹Institut De La Vision Paris, France; ²CHNO des Quinze-Vingts, France. We recorded iORG on healthy volunteers using an Adaptive-Optics Scanning Laser Ophthalmoscope and showed that age and color blindness are two important factors that need to be taken into account.

Room: ICM Room 4a 10:30 -- 12:00 S2C • Brillouin Microscopy and Acoustical Methods Presider: Giuliano Scarcelli; Univ. of Maryland at College Park, USA

S2C.1 • 10:30

BIPD-Assisted Brillouin Microscopy Reveals Altered Bone Biomechanics in

Osteopetrosis, Renzo Vanna², Morteza Behrouzitabar^{3,1}, Marco Ventura², Victor Alcolea-Rodriguez², Maria Lucia Schiavone⁴, Cristina Sobacchi⁴, Dario Polli⁵, Cristian Manzoni², Giulio Cerullo⁵, Giuseppe Antonacci¹; ¹Specto Photonics, Italy; ²IFN - CNR, Italy; ³Università degli Studi Bicocca, Italy; ⁴Humanitas Hospital, Italy; ⁵Politecnico di Milano, Italy. Osteopetrosis is a rare genetic disorder characterized by excessive bone density and fragility. We investigated the mechanical changes associated with this disease using a custom confocal Brillouin microscope integrating a birefringent-induced phase delay (BIPD) filter to suppress unwanted Rayleigh

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

scattering by >60 dB.

S2C.2 • 10:45

Biomechanics of Glioblastoma Tissue: Insights From in Vitro Models Using Brillouin and Raman Spectroscopy, Roberta Galli¹, Tina Leonidou¹, Jan Rix¹, Katrin Kirsche¹, Edmund Koch¹, Ilker Eyüpoglu¹, Ortrud Uckermann¹; ¹Dresden Univ. of Technology, Germany. Brillouin microscopy retrieved the viscoelastic properties of different biochemical components in glioblastoma organoids derived from human brain tumor tissue, which are an in vitro model recapitulating the biological characteristics and heterogeneity of tumor tissue.

S2C.3 • 11:00

Investigation of the Microscopic and Molecular Processes Underlying the Corneal Cross-Linking Therapy, Jan Rix¹, Svea Steuer², Jonas Golde^{1,3}, Fadi Husein⁴, Felix Lochmann⁴, Steven Melcher², Gerald Steiner², Julia Walther¹, Frederik Raiskup⁴, Ramin Khoramnia⁴, Robert Herber⁴; ¹TU Dresden, Faculty of Medicine Carl Gustav Carus, Medical Physics and Biomedical Engineering, Fetscherstrasse 74, Germany; ²TU Dresden, Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Fetscherstrasse 74, Germany; ³Fraunhofer Inst. for Material and Beam Technology IWS, Winterbergstrasse 28, Germany; ⁴Department of Ophthalmology, Univ. Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Germany. Investigations on porcine eyes by Brillouin-Raman spectroscopy and polarization-sensitive optical coherence tomography revealed that mechanical stiffening of corneal cross-linking therapy is based on fiber alignment and hydration, but not on changes in the molecular structure.

S2C.4 • 11:15

Ultra-Fast Pathogen Identification in Sepsis Diagnosis Using an Optomechanical Sensor Assisted by Artificial Intelligence., Irene Colomar Marí^{1,2}, Alejandro Iregui¹, Casilda Muñoz¹, Carolina Heras¹, Matthieu Duperron¹, Daniel Ramos², Blanca Caballero¹; ¹Nanological S.L., Spain; ²Inst. of Material Science of Madrid (ICMM), CSIC, Spain. An optomechanical platform is presented enabling ultra-fast, label-free pathogen identification from whole blood, using biophysical properties. By using deep learning algorithms, it achieves over 96% accuracy in 1mL sample volume within 20 minutes.

S2C.5 • 11:30

Study on the Pump and Probe Beam Overlap in Stimulated Brillouin Scattering

Microscopy, Meng Xu¹, Zixuan Du¹, Jinrui Zhang¹, Shuai Yao¹, yun qi¹, Fan Yang¹; ¹Shanghai *Inst of Optics and Fine Mech, China.* We present, for the first time, a theoretical and experimental investigation into the effect of sample heterogeneity on the overlap between the pump and probe beams and the resulting Brillouin signal in stimulated Brillouin microscopy.

S2C.6 • 11:45

Angle and Polarization Dependence of Spontaneous Brillouin Scattering, Ye Bo¹, Shuai Yao¹, Yun Qi¹, Fan Yang¹; ¹Shanghai Inst of Optics and Fine Mech, China. We designed an off-axis Brillouin spectroscopy system to study the angle and polarization dependence of spontaneous Brillouin scattering, using Rayleigh scattering as a reference.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 4b 10:30 -- 12:00 S2D • Molecular Imaging Presider: Jeesu Kim: Pusan National Univ.

S2D.1 • 10:30 (Invited)

Development and Validation of a Novel Photoacoustic Calcium-Sensitive Probe for Functional Neuroimaging in Mice, Nikita Kaydanov¹, Alexander Cook¹, Gretel Kamm¹, Juan Boffi¹, Claire Deo¹, Robert Prevedel^{1,2}; ¹European Molecular Biology Laboratory, Germany; ²Interdisciplinary Center of Neurosciences, Heidelberg Univ.,

Germany. Photoacoustic tomography with calcium probes could enable functional imaging of the whole brain. This work develops and characterizes novel far-red calcium reporters outperforming existing sensors, demonstrating successful in vivo labeling of mouse brain tissue and in vitro characterization of a calcium-sensitive probe.

S2D.2 • 11:00

Neuromelanin Imaging in Entire Human Midbrain Organoids Using Optoacoustic

Mesoscopy, Ludwig Englert^{1,2}, María Lacalle-Aurioles³, Nguyen-Vi Mohamed³, Paula Lépine³, Meghna Mathur³, Vasilis Ntziachristos^{1,2}, Thomas Durcan³, Juan Aguirre^{1,4}; ¹*Inst. of Biological and Medical Imaging, Helmholtz Zentrum München, Germany;* ²*Chair of Biological Imaging, Central Inst. for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical Univ. of Munich, Germany;* ³*The Neuro's Early Drug Discovery Unit (EDDU) Department of Neurology and Neurosurgery, McGill Univ., Canada;* ⁴*Departamento de Tecnología Electrónica y de las Comunicaciones, Universidad Autonoma de Madrid, Spain.* Human midbrain organoids (hMOs) provide new research avenues for patient-specific therapies in the field of Parkinson's disease but imaging organoids intact remains challenging. Raster scanning optoacoustic mesoscopy enables a rapid, tissue-clearing and label-free analysis of hMOs.

S2D.3 • 11:15

Calibrated Photoacoustic Spectroscopy as a New Tool for Quantitative Characterization of Imaging Contrast Agent, Clément Linger^{1,2}, Nicolas Tsapis², Jèrôme Gateau¹; ¹Laboratoire d'Imagerie Biomédicale, Sorbonne Univ., France; ²Institut Galien Paris-Saclay, Univ. Paris-Saclay, France. A calibrated photoacoustic (PA) spectrometer based on a conventional PA imaging system allows quantitative characterization of contrast agents. We illustrate that it can evaluate the photoacoustic generation efficiency and reveal spectral variation within one agent.

S2D.4 • 11:30

A Numerical Photoacoustic Forward Model for PA Signals Generated in

Fluorophores, Marzieh Ezzatpour¹, Farzin Ghane Gholmohamadi¹, Jan Laufer¹; ¹*Martin-Luther Univ.,Halle, Germany.* A numerical photoacoustic (PA) forward model to predict time-resolved PA signals in fluorophores under a cuvette-based setup was developed and validated with CuSO4 and R6G solutions. It enables fluorophore characterization for PA molecular imaging.

S2D.5 • 11:45

Non-Invasive Precision Mapping of Skin Cancer With Automated Segmentation Assisted Photoacoustic Imaging, Xiuting Ll¹, Valerie Xinhui Teo¹, Steven Tien Guan Thng², Malini Olivo², Dinish U.S³; ¹Agency for Science, Technology and Research (A*STAR), Singapore; ²National Skin Centre, Singapore; ³A*STAR Skin Research Labs, Singapore. We

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

present a photoacoustic imaging (PAI) approach with automated segmentation for real-time, non-invasive mapping of pigmented basal cell carcinoma (BCC). This technique enhances preoperative assessment and surgical planning, improving precision, efficiency, and overall patient outcomes.

Room: ICM Room 5 10:30 -- 12:00 S2E • Pre-Clinical and Clinical Studies Tissue Ablation Presider: Fake Lu; State Univ. of New York, USA

S2E.1 • 10:30

Advanced Label-Free SERS Detection of DNA Using Optofluidic Fibre Probe, Sathi Das¹, Frederic Amiard², Dinish U.S⁴, Marc Lamy de la Chapelle^{2,3}, Georges Humbert¹; ¹*Photonics, XLIM Research Inst., CNRS Limoges Univ., France;* ²*Institut des Molécules et Matériaux du Mans (IMMM - UMR6283), Université du Mans, avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France, France;* ³*Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Inst. in BioNano-Sciences, Babes-Bolyai Univ., 42 T. Laurian Str., 400271, Cluj-Napoca, Romania, Romania;* ⁴*A**STAR Skin Research Labs, Singapore. We have demonstrated the excellent SERS sensitivity of suspended core photonic crystal fibre (SuC-PCF) for the label-free detection of Poly A nucleotide, highlighting its potential for highly sensitive, SERS-based nucleic acid sensing applications.

S2E.2 • 10:45

Advancements in Laser Endodontic Sterilization: Bacterial Eradication and Penetration Depth in Dentinal Tubules, Ayse Sena Sarp¹; ¹Dentistry Faculty, Bahcesehir Univ., *Turkey.* This study explores laser technology's potential in endodontic sterilization, focusing on bacterial eradication and penetration depth in dentinal tubules. Various laser wavelengths were analyzed for effectiveness and safety, optimizing parameters for enhanced disinfection and minimal tissue damage.

S2E.3 • 11:00

Automatic Temperature-Controlled Retinal Laser Therapy: First Clinical Study

Results, Ralf Brinkmann^{2,1}, Christopher Kren², Veit Danicke², Dirk Theisen-Kunde², Hossam Abbas³, Johann Roider⁴, Claus von der Burchard⁴; ¹Inst. of Biomedical Optics, Univ. of Lübeck, Germany; ²Medical Laser Center Lübeck, Germany; ³Inst. for Electrical Engineering in Medicine, Univ. of Lübeck, Germany; ⁴Department of Ophthalmology, Christian-Albrechts-Univ. of Kiel, Germany. This is the first clinical study on automatic optoacoustic temperature guided retinal laser treatments. The method and set-up as well as first results of the controller performance during irradiation and clinical outcome is presented.

S2E.4 • 11:15

Therapeutic Modification of Biochemical Atherosclerotic Plaque Composition as Serially Assessed by Intravascular Fluorescence Lifetime Imaging Integrated With OCT, Hyeong Soo Nam¹, Dong Oh Kang², Sunwon Kim³, Jeongmoo Han¹, Soohyung Park², Eun Jin Park², Jin Won Kim², Hongki Yoo¹; ¹Korea Advanced Inst of Science & Tech, Korea (the Republic of); ²Korea Univ. Guro Hospital, Korea (the Republic of); ³Korea Univ. Ansan Hospital, Korea (the Republic of). We utilized OCT-FLIm for serial in vivo assessment of coronary plaques following drug-coated balloon (DCB) angioplasty. This multimodal system enabled quantitative

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

imaging of inflammation and healed plaque burden, revealing DCB-induced structural and biochemical stabilization.

S2E.5 • 11:30

Optimising Deep-UV Femtosecond Laser Parameters for High-Precision Ablation of Soft Biological Tissue, Tatiana Malikova¹, Rainer J. Beck¹, Robert R. Thomson¹, Jonathan D. Shephard¹; ¹*Heriot-Watt Univ., UK.* Achieving precise, damage-free ablation remains a challenge in laser surgery. We demonstrate high-precision ablation of a brain tissue model using deep-UV femtosecond radiation and investigate the role of laser parameters in the ablation process.

S2E.6 • 11:45

Limited Laser-Induced Esophageal Ablation Using Radial Fiber in an Ex-Vivo Rabbit Model, Seval Unal^{1,2}, Merve Türker Burhan^{1,2}, Serhat Tozburun^{1,2}; ¹*Izmir Biomedicine and Genome Center, Turkey;* ²*Izmir International Biomedicine and Genome Inst., Dokuz Eylul Univ., Turkey.* We presented a new endoscopy head with radial fiber to limit laser mucosal ablation and tested it in an ex-vivo model. The preliminary results confirmed superficial laser ablation without affecting the muscle layer.

Room: ICM Room 11

16:00 -- 18:00 S4F • Cerebral Hemodynamics and Neural Activity Presider: Ilias Tachtsidis; Univ. College London, UK

S4F.1 • 16:00 (Invited)

Impact of Severe Hypoglycemia on Cerebral Hemodynamics in Very Preterm

Neonates, Sabrina Brigadoi¹, Guy A. Perkins¹, Silvia Guiducci², Giulia Res², Federica Savio², Daniele Trevisanuto², Elena Priante², Alfonso Galderisi³, Eugenio Baraldi²; ¹Department of Developmental Psychology and Socialization, Univ. of Padova, Italy; ²Department of Women' and Children's Health, Univ. of Padova, Italy; ³Yale School of Medicine, Yale Univ., USA. There is no consensus on how severe hypoglycemia impacts the very preterm brain. We used continuous DOT and blood glucose monitoring to investigate whether there is spatially consistent coupling between hemodynamics and glucose concentration.

S4F.2 • 16:30

Intracranial Pressure and Cerebral Blood Flow Pulse Dynamics in Patients With Idiopathic Normal Pressure Hydrocephalus During Katzman Infusion Test: a Pilot Optical Monitoring Study, Carolina Fajardo Vega¹, Monica Torrecilla¹, Murad Al Nusaif^{1,3}, Susanna Tagliabue¹, Jonas Fischer¹, Viacheslav Danilov⁴, Gemma Piella⁴, Paula Duch-Vega³, Aasma Sahuquillo-Muxi³, Ivette Chocrón⁵, Juan Sahuquillo^{3,6}, Maria Poca^{3,6}, Turgut Durduran^{1,2}; ¹*ICFO -Institut de Ciencies Fotoniques, Spain;* ²*Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain;* ³*Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron Research Inst., Spain;* ⁴*Department of Engineering, Universitat Pompeu Fabra, Spain;* ⁵*Department of Anesthesiology, Vall d'Hebron Univ. Hospital, Spain;* ⁶*Department of Neurosurgery, Vall d'Hebron Univ. Hospital, Spain.* This pilot study explores the correlation between intracranial pressure and cerebral blood flow pulse amplitudes during Katzman tests in four iNPH patients, highlighting the potential of non-invasive optical monitoring to improve shunt outcome

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

prediction.

S4F.3 • 16:45

Measuring Respiration-Driven Perturbations of Intra- and Extra- Cerebral Hemodynamics During Slow Breathing: a TD-NIRS Study, Rebecca Re^{1,2}, Letizia Contini¹, Caterina Amendola¹, Davide Contini¹, Alessandro Torricelli^{1,2}, Lorenzo Spinelli²; ¹Dipartimento di Fisica, *Politecnico di Milano, Italy;* ²Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy. We investigated the impact of slow breathing on the cerebral hemodynamics of 16 subjects using TD-NIRS. Results show increased respiratory-associated oscillations and suggest a possible change in strategy for vascular tone control at low frequencies.

S4F.4 • 17:00

TD-FNIRS for Auditory-Inspired Speech and Music Hemodynamic Response

Function, Biao Zheng^{1,2}, Hyojin Park^{1,3}, Hamid Dehghani^{1,2}; ¹Univ. of Birmingham, UK; ²School of Computer Science, UK; ³School of Psychology, UK. This study uses TD-fNIRS to examine auditory cortex responses to speech and music. Results show the left cortex responds more to speech, while the right favours music. Overall, speech elicits a stronger response than music.

S4F.5 • 17:15

Assessing the Brain Response to the Rotating Snake Illusion by TD-FNIRS, Alessandro Lia², Augusto Bonilauri¹, Giuseppe Baselli¹, Lorenzo Spinelli³, Fabrizio Martelli⁴, Paolo Antonino Crasso⁴, Massimo Gurioli⁴, Alessandro Torricelli^{2,3}, Davide Contini²; ¹Dipartimento di Elettronica Informazione e BioIngegneria, Politecnico di Milano, Italy; ²Dipartimento di Fisica, Politecnico di Milano, Italy; ³Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ⁴Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Italy. We assessed the cortical hemodynamic activity induced by static illusory-motion image, detected using a multichannel TD-fNIRS device. Differences in the hemodynamic response function seem located around the motion sensitive area of the visual cortex V5.

S4F.6 • 17:30

Mapping Brain Function Underlying Motor Observation and Naturalistic Imitation Using High-Density Diffuse Optical Tomography, Dalin Yang¹, Tessa George¹, Chloe Sobolewski¹, Sophia McMorrow¹, Carolina Pacheco², Kelsey King¹, Rebecca Rochowiak², Evan Daniels-Day¹, Sungmin Park¹, Emma Speh¹, Daniel Lidstone², Romila Santra², Deana Crocetti², Alice Sperry², Mary Nebel², Bahar Tuncgenc³, Rene Vidal⁴, Natasha Marrus¹, Stewart Mostofsky², Adam T. Eggebrecht¹; ¹Washington Univ. School of Medicine, USA; ²Kennedy Krieger Inst., USA; ³Nottingham Trent Univ., UK; ⁴Univ. of Pennsylvania, USA. We used high-density diffuse optical tomography and computer-vision-based imitation assessments to simultaneously map brain activity and assess imitation fidelity in autistic and non-autistic adults, and identified brainbehavior associations related to autistic traits and imitation fidelity.

S4F.7 • 17:45

Measuring Cerebral Blood Flow at Late Times-of-Flight With CoMind R1: a Multichannel Interferometric Optical Neuromonitoring System, Stella Avtzi¹, Veronika Parfentyeva¹, Octave Etard¹, Alexandra Tran-Van-Minh¹, Anurag Behera¹, Tanvi Tambe¹, Ali Mehmed¹, Artur Istufaj¹, Jan Goodrich¹, Youssef Ibrahim¹, Saeed Darabi¹, Pablo Villar Sanjurjo¹, Taimoor Ali¹, Yoojin Kim¹, Clarissa Lin¹, Simone Sturniolo¹, Alexandar Ruesch¹, Dominic Hill¹, Amir Salehi Lashkajani¹, Jan Andersen¹, Gordon McCabe¹, Matt Thackrah¹, Dawid Borycki¹, Chloe Maine¹, Tanja Dragojević¹, Claus Lindner¹, Robert J Cooper¹; ¹CoMind Technologies Ltd., UK. CoMind

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

R1 is a multichannel interferometric system that measures time-of-flight resolved blood flow index (BFi) with high cerebral sensitivity. It enables non-invasive, high-fidelity pulsatile BFi measurements, making it ideal for clinical neuromonitoring.

Room: ICM Room 2 16:00 -- 18:00 S4A • Phase-, Holographic-, Absorption-, Polarization-Based Microscopy Presider: Pietro Ferraro; Inst. of Intelligent Systems ISASI, Italy

S4A.1 • 16:00 (Invited)

Enhancing Incoherent Holographic Lattice Light-Sheet Microscopy Through Phase Mask Optimization, Mariana Potcoava¹, Zackary Zurawski¹, Simon Alford¹, Christopher Mann^{2,3}; ¹Anatomy and Cell Biology, Univ. of Illinois at Chicago, USA; ²Department of Applied Physics and Materials Science, Northern Arizona Univ., USA; ³Center for Materials Interfaces in Research and Development, Northern Arizona Univ., USA. We present quantitative 3D live nerve cell imaging with subcellular resolution and extended FOV using incoherent holographic lattice light-sheet system with an optimized SLM phase mask modulation for shaping the light collected from the sample.

S4A.2 • 16:30

Modulated Optically Computed Phase Microscopy for High-Resolution, High-Sensitivity Label-Free Imaging, Xuan Liu¹, Rupak Bhakta¹, Emily Kryvorutsky¹, Yuanwei Zhang¹; ¹New Jersey Inst. of Technology, USA. To study cell-nanoparticle interactions, we developed and validated the modulated optically computed phase microscopy technology which utilizes optical computation to perform Fourier transform and impose temporal modulation to achieve high resolution and high phase sensitivity.

S4A.3 • 16:45

Clinically-Driven QPI-Based Hierarchical Classification of Ovarian Circulating Tumor Cells in Flow Cytometry, Daniele Pirone¹, Beatrice Cavina², Martina Mugnano¹, Vittorio Bianco¹, Lisa Miccio¹, Anna Myriam Perrone², Anna Maria Porcelli², Giuseppe Gasparre², Ivana Kurelac², Pasquale Memmolo¹, Pietro Ferraro¹; ¹CNR-ISASI, Italy; ²Univ. of Bologna, Italy. We present a hierarchical machine learning approach based on quantitative phase imaging flow cytometry for label-free classification of ovarian circulating tumor cells. Exploiting *a priori* clinical information, our method enhances patient follow-up in liquid biopsy.

S4A.4 • 17:00

The Mueller Matrix Analysis of Articular Cartilage Tissue Using Liquid Crystal

Modules, Chi-Hsiang Lien¹, Chun-Yu Lin², Shu-Chun Chuang³, Yi-Shan Lin³, Chung-Hwan Chen³, Shean-Jen Chen²; ¹National United Univ., Taiwan; ²College of Photonics, National Yang Ming Chiao Tung Univ., Taiwan; ³Orthopaedic Research Center, Kaohsiung Medical Univ., Taiwan. This study uses Mueller matrix imaging with liquid crystal modulators to analyze articular cartilage polarization properties, extracting birefringence parameters for collagen characterization and structural assessment.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

S4A.5 • 17:15

Nanotoxicity Assessment by Digital Holographic Quantitative Phase Microscopy with Downstream Biochemical Analysis, Anne Marzi¹, Kai M. Eder¹, Björn Kemper¹, Jürgen Schnekenburger¹; ¹Univ. of Muenster, Germany. Colorimetric in-vitro cytotoxicity approaches are often limited applicable to nanomaterials. We combined label-free digital holographic microscopy (DHM) with downstream biochemical nanotoxicity testing. The results demonstrate the data quality enhancement potential of DHM in cytotoxicity assessment.

S4A.6 • 17:30

Real-Time Automatic Reconstruction of Digital Holograms, Müge Topcu^{1,2}, Serhat Tozburun^{1,2}; ¹*Izmir Biomedicine and Genome Center, Turkey;* ²*Izmir International Biomedicine and Genome Inst., Dokuz Eylul Univ., Turkey.* A Python based real-time reconstruction algorithm independent of telecentricity and sample scattering was proposed for Digital Holographic Microscopy (DHM).

S4A.7 • 17:45

Features of a Calibration Procedure for a Back-Scattering Scanning Polarimetric

Setup, Vladislav Stefanov¹, Bhanu P. Singh¹, André Stefanov¹; ¹*Inst. of Applied Physics, Switzerland.* We address the problem of calibrating a polarimetric back-scattering setup which inculdes a beamsplitter. Using Fisher information, we justify a specific configuration for the maximum likelihood method and demonstrate its effectiveness through Monte Carlo simulations.

Room: ICM Room 3 16:00 -- 18:00 S4B • Dynamic OCT Presider: Dierck Hillmann; Vrije Universiteit Amsterdam, Netherlands

S4B.1 • 16:00 (Invited)

Investigating DOCT Signal Origins and Bringing a new Contrast to Fluorescence

Imaging, Noah Heldt^{1,2}, Martin Ahrens^{1,2}, Mario Pieper^{2,3}, Robert Schönherr^{2,3}, Lucie Jeschke¹, Peter König^{2,3}, Marko Lampe^{4,5}, Gereon Hüttmann^{1,2}; ¹Inst. of Biomedical Optics, Universität zu Lübeck, Germany; ²Airway Research Center North (ARCN), German Center of Lung Research (DZL), Germany; ³Inst. of Anatomy, Universität zu Lübeck, Germany; ⁴Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Germany; ⁵German Cancer Reasearch Center, Germany. We investigated the dynamic optical coherence tomography (dOCT) signal origins by correlative measurements together with spinning disk confocal microscopy (SDM). Furthermore, we propose dynamic contrasting for detecting organelle movement signatures in the sub-second range.

S4B.2 • 16:30

Comprehensive Imaging of *in Vitro* Intratissue Activity by Quantitative- and Multi-Dynamics Optical Coherence Tomography, Rion Morishita¹, Ibrahim Abd El-Sadek^{1,2}, Shumpei Fujimura¹, Atsuko Furukawa³, Satoshi Matsusaka³, Shuichi Makita¹, Yoshiaki Yasuno¹; ¹Computational Optics Group, Univ. of Tsukuba, Japan; ²Department of Physics, Faculty of Science, Damietta Univ., Egypt; ³Clinical Research and Regional Innovation, Faculty of Medicine, Univ. of Tsukuba, Japan. We propose a quantitative and comprehensive dynamic OCT (DOCT) method. The proposed method estimates the speed and occupancy of the intratissue/intracellular dynamic scatterers and provides comprehensive visualization of

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

functional structures that were previously obscured.

S4B.3 • 16:45

Non-Equidistant Temporal Scanning in Dynamic MHz-OCT for Higher Speed, Sazgar Burhan¹, Madita Göb¹, Gereon Hüttmann^{1,2}, Robert Huber^{1,2}; ¹Universität zu Lübeck, Inst. of *Biomedical Optics, Germany;* ²*Medical Laser Center Lübeck GmbH, Germany.* We investigate advanced scanning strategies to improve speed in dynamic MHz-OCT, demonstrating that temporally non-uniform sampling outperforms uniform scanning by achieving faster imaging speeds while largely preserving image clarity.

S4B.4 • 17:00 (Invited)

Structural and Metabolic Imaging of Cancer Spheroids by Zero-NA Full-Field Optical Coherence Microscope With Computational Augmentations, Suzuyo Komeda¹, Nobuhisa Tateno¹, Ann M. Detje², Xibo Wang¹, Yue Zhu^{3,1}, Atsuko Furukawa⁴, Rion Morishita¹, Ibrahim Abd El-Sadek^{1,5}, Shuichi Makita¹, Yoko Miura², Satoshi Matsusaka⁴, Yoshiaki Yasuno¹; ¹Computational Optics Group, Univ. of Tsukuba, Japan; ²Univ. of Lübeck, Germany; ³Nanjing Univ. of Science and Technology, China; ⁴Faculty of Medicine, Univ. of Tsukuba, Japan; ⁵Department of Physics, Faculty of Science, Damietta Univ., Egypt. Highresolution and functional imaging of in vitro samples including cancer spheroids is demonstrated with a full-field swept-source optical coherence tomography device, where computational augmentations enable long imaging depth, speckle-free imaging, and label-free cellular activity imaging.

S4B.5 • 17:30

Non-Invasive, Label-Free Imaging of Trophoblast Organoids With Dynamic Optical Coherence Microscopy, Kimiya Mousavi^{1,2}, Yujie Hu², Adrian Tanskanen¹, Gina McNeill^{3,4}, Alexander Beristain^{3,4}, Myeong Jin Ju^{2,5}, Pierre Lane^{1,2}; ¹*Integrative Oncology, BC Cancer Research Inst., Canada;* ²*School of Biomedical Engineering, The Univ. of British Columbia, Canada;* ³*The British Columbia Children's Hospital Research Inst., Canada;* ⁴*Obstetrics & Gynecology, The Univ. of British Columbia, Canada;* ⁵*Ophthalmology & Visual Sciences, The Univ. of British Columbia, Canada.* Trophoblast organoids model placental development; Traditional imaging requires invasive sectioning and staining. Optical coherence microscopy enables label-free imaging. Dynamic OCM enhances image contrast by detecting metabolic activity, providing visualization of intracellular motion and organoid structure.

Room: ICM Room 4a 16:00 -- 18:00 S4C • Novel Methods and Applications Presider: Brendan Kennedy; Nicolaus Copernicus Univ., Poland

S4C.1 • 16:00 (Invited)

Sensing Biological Forces With Deformable Microlasers, Eleni Dalaka², Joseph S. Hill², Jonathan H. Booth³, Anna Popczyk¹, David Ripp¹, Stefan R. Pulver³, Malte C. Gather^{1,2}, Marcel Schubert¹; ¹*Humboldt Centre for Nano and Biophotonics, Univ. of Cologne, Germany;* ²School of Physics and Astronomy, Univ. of St Andrews, UK; ³School of Psychology and Neuroscience, Univ. of St Andrews, UK. Microlasers are bright, monochromatic, and short-pulsed optical devices that can be detected deep inside biological tissue. Here, we demonstrate their use as

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

force sensors for various biological samples, including organoids and small animals.

S4C.2 • 16:30

Kilohertz Fluorescence Imaging Flow Cytometry, Christan Stock¹, Matthea Thielking¹, Sebastian Karpf¹; ¹Universität zu Lübeck, Germany. We present a one-photon fluorescence imaging flow cytometer based on high-speed Spectro-Temporal Laser Imaging by Diffractive Excitation. By combining fluorescence and transmission imaging in a microfluidic chip this enables high-speed imaging flow cytometry.

S4C.3 • 16:45

Compact, Hybrid Near Infrared and Speckle Contrast Optical Spectroscopy

Device, Andres F. Quiroga Soto¹, Manish Verma¹, Mirko Fornasier¹, Faruk Beslija¹, Lisa Kobayashi Frisk¹, Sumana Chetia¹, M. Atif Yaqub¹, José M. Beato¹, Juan Fernandez¹, Valenti Bosch¹, Xavier Menino¹, Daniel Senciales¹, Christian Garcia¹, Oscar Alcaine¹, Jose Carlos Cifuentes¹, Siddharth Dave², Sreekanth Cheruku², Christopher Choi², Peiman Lahsaei², Margherita Tabet², RyanCole Weldon-Carroll², DaiWai Olson³, Will Little⁴, David Busch⁵, Turgut Durduran^{1,6}; ¹*inst.* Of Photonic Sciences, Spain; ²Anesthesiology & Pain Mgmt, UT Southwestern Medical Center, USA; ³Neurology, UT Southwestern Medical Center, USA; ⁴Medical Center, UT Southwestern Medical Center, USA; ⁶Institució Catalana de Recerca i Estudis Avançats, Spain. A compact, hybrid near-infrared and speckle contrast optical spectroscopy system is presented for monitoring microvascular blood flow and tissue oxygen saturation. High-speed acquisition (16.7 Hz) and signal-to-noise ratios (19-32 dB) were achieved.

S4C.4 • 17:00

Optical Microrheology of Blood Clots, Simon Kouba¹, Lionel Lartigue², Nathalie Westbrook², Julien Moreau¹, Jean-Marc Allain¹; ¹Laboratoire de Mécanique des Solides, *France;* ²Laboratoire Charles Fabry, France. A passive microrheology setup based on Brownian motion of polystyrene beads is presented. Local storage and loss moduli of artificial blood clots

were measured and correlated with fibrinogen concentration.

S4C.5 • 17:15

Self- Supervised Scattering Pattern Classification of Peripheral Blood Stream Cells, David Dannhauser², Paolo Antonio Netti^{2,1}, Filippo Causa²; ¹*Istituto Italiano di Tecnologia (IIT), Italy;* ²*Interdisciplinary Research Centre on Biomaterials (CRIB), Univ. of Naples, Italy.* Identifying specific cell classes without labelling is challenging. We show a deep learning method using single-cell microfluidic data, offering fast, operator-free identification of rare cells like tumour cells, even without training data for the target class.

S4C.6 • 17:30

Spectroscopic Motion Imaging of Particle Adhesion to Cells Using Optically Computed Phase Microscopy, Xuan Liu¹, Don Bonifacio¹, Leonardo Pena¹, Sara Gad¹, Joseph Zimmer¹, Laterriean Minaya¹, John Oldziej¹, Kevin Paredes Nieves¹, Yuanwei Zhang¹; ¹New Jersey Inst. of Technology, USA. To study particle adhesion to cells, we developed and validated a novel spectroscopic motion imaging technology that quantifies particle motion under different adhesion conditions and characterizes the time profile of the adhesion process.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

S4C.7 • 17:45

Surface Roughness Effects on Surface Acoustic Wave Detection in Pump-Probe

Microscopy, Felix Wäger^{1,3}, Matthias Domke¹, Fadi Dohnal¹, Alexander Buchner², Heinz P. Huber⁴, Ronald Sroka^{2,3}; ¹*Research Center for Microtechnology, Vorarlberg Univ. of Applied Sciences, Austria;* ²*Department of Urology, Hospital of Univ. of Munich, Germany;* ³*LIFE-Zentrum, Hospital of Univ. of Munich, Germany;* ⁴*Lasercenter, Munich Univ. of Applied Sciences, Germany.* This study investigates the correlation between sample surface roughness and SAW visibility in pump-probe microscopy using hard biological samples, like dentin and enamel. Further adjustments are presented to improve the excitation of surface acoustic waves.

Room: ICM Room 4b

16:00 -- 18:00 S4D • Image Reconstruction and Analysis *Presider: Jan Laufer; Martin Luther Univ Halle Wittenberg, Germany*

S4D.1 • 16:00

Skin Flattening of Raster-Scan Optoacoustic Mesoscopy (RSOM) Reconstructions Based on Polynomial Fitting, Manuel Gehmeyr^{1,2}, Maria Begona Rojas Lopez^{2,1}, Suhanyaa Nitkunanantharajah^{1,2}, Hubert Preißl^{3,4}, Andreas Vosseler^{4,3}, Reiner Jumpertz von Schwartzenberg^{3,4}, Andreas Birkenfeld^{3,4}, Dominik Jüstel^{1,5}, Vasilis Ntziachristos^{2,1}; ¹Helmholtz Munich, Germany; ²Chair of Biological Imaging, Technical Univ. Munich, Germany; ³German Center for Diabetes, Germany; ⁴Department of Diabetology, Endocrinology and Nephrology, University Tübingen, Germany; ⁵Inst. of Computational Biology, Helmholtz Munich, Germany. We present a flattening technique for raster-scan optoacoustic mesoscopy using iterative polynomial fitting and outlier exclusion, that aligns the skin surface in three-dimensional reconstructions. This technique enhances visualizations and can be used in post-processing.

S4D.2 • 16:15

Comparative Analysis of Acoustic Reconstruction Methods for Chromophore and Oxygenation Quantification in Limited-View 3D Quantitative Photoacoustic

Tomography, Guo Tang¹, Felix Lucka², Teemu Sahlström³, Benjamin T. Cox⁴, Tanja Tarvainen³, Jan Laufer¹; ¹Inst. of Physics, Martin-Luther-Universität, Germany; ²Computational Imaging Group, Centrum Wiskunde & Informatica, Netherlands; ³Univ. of Eastern Finland, Finland; ⁴Department of Medical Physics and Biomedical Engineering, Univ. College London, UK. Three-dimensional quantitative photoacoustic tomography is challenged by uncertainties in light fluence distribution and artifacts from limited view problem. This study evaluates advanced acoustic reconstruction algorithms using model-based inversion schemes to improve chromophore and oxygenation quantification.

S4D.3 • 16:30

Self-Supervised Sparse-Dense Optical Resolution Photoacoustic Microscopy, Benjamin Walder¹, Daniel Toader², Robert Nuster², Guenther Paltauf², Gregor Langer³, Peter Burgholzer³, Lukas Krainer⁴, Markus Haltmeier¹; ¹Leopold-Franzens-Universität Innsbruck, Austria; ²Universität Graz, Austria; ³Research Center for Non Destructive Testing GmbH, Austria; ⁴Prospective Instruments LK OG, Austria. Acquiring a fully sampled high-resolution image in OR-PAM is time-consuming and costly. To reduce costs, we propose a sparse-dense sampling strategy, where both fully sampled and sparsely sampled regions are collected, along

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

with a self-supervised learning strategy to extract relevant image structures.

S4D.4 • 16:45

Transformer-Based Dual SwinUNet With Contrastive Loss for Enhanced Photoacoustic Imaging, Isha Munjal¹, Jaya Prakash¹; ¹*Indian Inst. of Science, India.* This study introduces a transformer-based dual SwinUNet for Photoacoustic Imaging, leveraging image and sinogram domains with multiple loss functions, including contrastive loss. It shows an 18% UIQI improvement over FD-UNet using 100 transducers at 135° coverage.

S4D.5 • 17:00

Matricial Model-Based Reconstruction for Compressed All-Optical Photoacoustic

Imaging, Ege Küçükkömürcü¹, Simon Labouesse², Marc Allain¹, Julien Lumeau¹, Antonin Moreau¹, Thomas Chaigne¹; ¹Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, Marseille, France, France; ²Rimeo, Montpellier, 34000, France., France. We introduce a matrix-based reconstruction framework for photoacoustic imaging that employs Tikhonov regularization for stable inversion and Hadamard compressed acquisitions for a tenfold speedup. Preliminary experimental and simulation results validate our method.

S4D.6 • 17:15

An Efficient Gauss-Newton Filter Based Pointwise Reconstruction Scheme for Fully Non-Linear Pharmacokinetic Fluorescence Photoacoustic Tomography, Bharadwaj B. Jampu¹, Naren Naik^{1,2}, Omprakash Gottam³, Prabodh K. Pandey⁴, Sanjay Gambhir⁵; ¹Electrical Engineering, Indian Inst. of Technology, Kanpur, India; ²Center for Lasers and Photonics, Indian Inst. of Technology, Kanpur, India; ³Electronics and Communication, Koneru Lakshmaiah Education Foundation, India; ⁴Radiological Sciences, Univ. of Irvine, California, USA; ⁵Nuclear Medicine, Sanjay Gandhi Postgraduate Inst. of Medical Sciences, India. We demonstrate first fully-nonlinear pointwise pharmacokinetic fluorescence-photoacoustic tomography (PK-FPAT) reconstructions in literature via an efficient scalable Gauss-Newton filter algorithm in a blob basis and two-compartment model framework. Preliminary numerical studies on cancermimicking phantoms validate the proposed algorithm.

S4D.7 • 17:30

Automatic Real-Time Quality Assessment for Optoacoustic Mesoscopy Data, Maria Begona Rojas Lopez^{1,2}, Manuel Gehmeyr^{1,2}, Suhanyaa Nitkunanantharajah^{1,2}, Hubert Preißl^{4,5}, Andreas Vosseler^{4,5}, Reiner Jumpertz von Schwartzenberg^{4,5}, Andreas Birkenfeld^{4,5}, Dominik Jüstel^{2,3}, Vasilis Ntziachristos^{1,2}; ¹*Chair of Biological Imaging, Technical Univ. Munich, Germany;* ²*Inst. of Biological and Medical Imaging, Helmholtz Munich, Germany;* ³*Inst. of Computational Biology, Helmholtz Munich, Germany;* ⁴*Department of Diabetology, Endocrinology and Nephrology, Eberhard-Karls Univ. Tübingen, Germany;* ⁵*German Center for Diabetes Research, Germany.* Due to its novelty, the quality of raster-scan optoacoustic mesoscopy (RSOM) clinical images is conventionally evaluated subjectively, hampering RSOM's scalability. We tackle this by developing an automatic quality assessment method validated on large RSOM datasets.

S4D.8 • 17:45

Spatiotemporal Feature Extraction in Phonon Microscopy Using Dual Attention for Cancer Cell Classification, Md Raihan Goni¹, Yijie Zheng^{1,2}, Rafael Fuentes-Dominguez¹, Fernando Perez-Cota¹, George S. Gordon¹; ¹Univ. of Nottingham, UK; ²Department of Physics, Univ. of Cambridge, UK. This study explores spatiotemporal feature extraction using dual

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

attention for cancer cell classification in phonon microscopy, examining the impact of spatial information on time-series data while reducing noise and enhancing feature representation for improved classification.

Room: ICM Room 5 16:00 -- 18:00 S4E • Pre-Clinical and Clinical Studies I Presider: Xuan Liu; New Jersey Inst. of Technology, USA

S4E.1 • 16:00

Tethered Instrument for Continuous Fluorescence Detection and Counting of Circulating Tumor Cells in Awake, Freely Moving Mice, Mark Niedre¹, Jane Lee¹, Mehrnoosh Emamifar¹, Chiara Bellini¹; ¹Bioengineering, Northeastern Univ., USA. Circulating tumor cells (CTCs) play a critical role in hematogenous cancer metastasis. Here, we describe a new fiber-optic tethered instrument for fluorescence enumeration of CTCs in awake, freely moving mice.

S4E.2 • 16:15

Monitoring Embryonic Development in Eggs Through Time-Domain Diffuse Optical Spectroscopy, Lennard van den Tweel^{1,2}, Vamshi Damagatla⁴, Ilaria Bargigia^{4,5}, Carla van der Pol³, Freek Ariese², Antonio Pifferi^{4,6}; ¹Adaptation Physiology Group, Wageningen Univ. & Research, Netherlands; ²LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Netherlands; ³Research department, HatchTech B.V., Netherlands; ⁴Dipartimento di Fisica, Politecnico di Milano, Italy; ⁵Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Italy; ⁶Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy. Time-domain diffuse optical spectroscopy was used to determine optical properties of chicken eggs during incubation. Results show the integrating sphere effect, heterogeneity, and embryonic development as challenges in the development of optical techniques for eggs.

S4E.3 • 16:30

Terahertz Spectroscopy-Based Characterization of Human Urinary Stones ex

Vivo, Soumyajyoti Mallick^{1,2}, Haolian Shi^{2,5}, David Citrin^{2,5}, Clarice Perrin-Mozet¹, Arnaud Marotel³, Ma'atem Béatrice Caillierez⁴, Jacques Hubert⁴, Walter Blondel¹, Marine Amouroux¹, Alexandre Locquet^{2,5}; ¹Université de Lorraine, CNRS, CRAN, France; ²Georgia Tech-CNRS IRL 2958, France; ³Ecole Nationale Supérieure de Géologie, France; ⁴Centre Hospitalier Régional et Universitaire de Nancy, France; ⁵Georgia Inst. of Technology, USA. This contribution presents preliminary results of a Terahertz Time-Domain-Spectroscopy-based characterization of four different types of urinary stones ex vivo and their potential differentiation based on estimated optical parameters.

S4E.4 • 16:45

Diffuse Optical Monitoring of Cerebral and Peripheral Hemodynamics During Pediatric Venoarterial Extracorporeal Membrane Oxygenation, Tiffany Ko¹, Alyssa M. Seeney¹, Darci Anderson¹, Briston Bayle¹, Alexis Schultz¹, Elizabeth Malick¹, Aidan Crozier¹, Jamie Weller¹, Pilar Anton-Martin¹, Kristen Coletti¹, Matthew P. Kirschen¹, Susan B. Williams¹, James T. Connelly¹, Meg E. Cates¹, Ashley A. Kilday¹, Natalie E. Rintoul¹, Holly L. Hedrick¹, Maryam Y. Naim¹, Todd J. Kilbaugh¹, Rodrigo Forti¹, Wesley Baker¹, Jennifer Lynch¹; ¹*Children's Hospital of Philadelphia, USA*. We summarize physiologic changes in cerebral and peripheral

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

hemodynamics detected by diffuse optical tissue monitoring in three pediatric patients during weaning from venoarterial extracorporeal membrane oxygenation (VA-ECMO) support.

S4E.5 • 17:00

Remote Physiological Monitoring of Neck Blood Vessels with a High-Speed

Camera, Meiyun Cao², Gennadi Saiko¹, Alexandre Douplik^{1,3}; ²*Toronto Metropolitan Univ., Canada;* ³*iBest, Keenan Research Centre, St. Michael Hospital of the LKS Knowledge Inst., Canada.* This study uses a high-speed camera for rPPG with cross-correlation method to map neck vessels distribution and calculate their PWV, addressing the limitations of costly, contactbased methods and demonstrating its potential to assist CVD detection.

S4E.6 • 17:15

Diffuse Optics for Non-Invasive Endothelial Function Monitoring in ICU Patients, Caterina Amendola¹, Marta Zanoletti³, Mauro Buttafava², Talyta Carteano⁴, Letizia Contini¹, Lorenzo Cortese³, Turgut Durduran^{3.5}, Claudia Guadagno⁶, Umut Karadeniz³, Michele Lacerenza², Jaume Mesquida⁷, Shahrzad Parsa⁸, Rebecca Re¹, Diego Sanoja Garcia⁴, Sanathana Konugolu Venkatsekar⁶, Lorenzo Spinelli⁹, Alessandro Torricelli^{1,9}, Alberto Tosi¹, Udo Weigel⁸, M. Atif Yaqub³, Davide Contini¹; ¹*Politecnico di Milano, Italy;* ²*PIONIRS s.r.l., Italy;* ³*ICFO - Institut de Ciències Fotòniques, Spain;* ⁴*ASPHALION S.L., Spain;* ⁵*Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain;* ⁶*BioPixS Ltd – Biophotonics Standards, IPIC, Ireland;* ⁷*Critical Care Department, Parc Taulí Hospital Universitari. Institut D'Investigació i Innovació Parc Taulí I3PT, Spain;* ⁸*HemoPhotonics S.L., Spain;* ⁹*Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy.* We analyzed very-low-frequency signals of hemodynamic parameters in a distal muscle of 14 healthy volunteers and 10 ICU patients, measured using time-domain near-infrared and diffuse correlation spectroscopies. Significant differences were observed in their power spectral density.

S4E.7 • 17:30

Suppressing High-Intensity Surgical Light in Multispectral Imaging, Stefan Kray¹, Moritz Gerlich¹, Andreas Schmid¹, Thomas Greiner¹; ¹*Inst. of Smart Systems and Services, Pforzheim Univ., Germany.* Multispectral Imaging (MSI) is a promising technology for assessing tissue oxygenation. However, MSI systems with integrated illumination suffer from surgical light in clinical settings. We demonstrate surgical light suppression by exploiting modulated light for MSI.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Monday, 23 June

Room: ICM Room 11 08:30 -- 10:00 M1B • Advances in Instrumentation and Technology I Presider: Caterina Amendola; Politecnico di Milano, Italy

M1B.1 • 08:30

Design and Characterization of a Fast Multi-Channel Time-Domain NIRS and DCS Device for Clinical Applications, Marco Nabacino¹, Caterina Amendola¹, Davide Contini¹, Rebecca Re^{1,2}, Lorenzo Spinelli², Alessandro Torricelli^{1,2}; ¹*Politecnico di Milano, Italy;* ²*Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy.* We present a device for combined Time-Domain NIRS and DCS measurements, featuring two detection channels and working at up to 50 Hz acquisition rates. Laboratory and in-vivo characterization shows its capability to make robust and reliable measurements.

M1B.2 • 08:45

PROMETEUS: Hybrid TD-NIRS and SCOS Instrument for Real-Time Monitoring of Brain Metabolism in Preterm Neonates - System Architecture and Characterization, Fabio Negretti¹, Caterina Amendola¹, Sabrina Brigadoi², Mauro Buttafava³, Robert J. Cooper⁴, Chiara Dalla Man⁵, Turgut Durduran^{6,7}, Flora Faure⁴, Mirko Fornasier⁶, Alfonso Galderisi⁸, Michele Lacerenza³, Hadija Marchiori⁵, Alberto Scarpa⁹, Lorenzo Spinelli¹⁰, Alessandro Torricelli^{1,10}, Davide Contini¹; ¹Dipartimento di Fisica, Politecnico di Milano, Italy; ²Department of Developmental and Social Psychology, Univ. of Padua, Italy; ³PIONIRS S.r.I, Italy; ⁴DOT-HUB, Department of Medical Physics and Biomedical Engineering, Univ. College London, UK; ⁵Department of Information Engineering, Univ. of Padua, Italy; ⁶ICFO - Institut de Ciències Fotòniques, The Barcelona Inst. of Science and Technology, Spain; ⁷Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain; ⁸Department of Pediatrics, Yale Univ., USA; ⁹Dave S.r.I, Italy; ¹⁰Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy. Prometeus project aims at enabling personalized nutrition in preterm neonates: by combining a hybrid diffuse optics metabolic sensing system with metabolic modeling, it optimizes brain health, reducing prematurity-related disabilities and enhancing NICU care.

M1B.3 • 09:00

Characterization and in Vivo DCS Measurements with Compact 1064 nm Laser, Tommaso Palo¹, Lisa C. Kobayashi Frisk², Alessandro Bossi¹, Ilaria Bargigia¹, Laura Di Sieno¹, Alberto Dalla Mora¹, Turgut Durduran^{2,3}, Antonio Pifferi¹; ¹*Politecnico di Milano, France;* ²*ICFO-Institut de Ciències Fotòniques, Spain;* ³*Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain.* We investigated a 1064nm compact laser as a potential TD-DCS source. Through BFI stability measures, studies on phantoms of varying viscosity and an in-vivo measurement we found that it is sufficiently accurate for future work.

M1B.4 • 09:15

The TinyBrains Prototype - a High-Density Hybrid Diffuse Optics Tomography System With Integrated Electroencephalography for Functional Studies in Neonates, Georgina Tresanchez¹, Nishigandha Patil¹, Osman Melih Can¹, M Atif Yaqub¹, Anurag Behera¹, Daniel Senciales¹, Mirko Fornasier¹, Moises Dominguez², Sanathana Konugolu Venkata Sekar³, Claudia Guadagno³, Ali Rajabi⁴, Alba Rivas⁵, Joan Sanchez de Toledo⁵, Thomas Fontaine², Marta Camprubi Camprubi⁵, Fabrice Wallois⁴, Turgut Durduran^{1,6}; ¹ICFO - Institut de Ciències Fotòniques, Spain; ²Seenel Imaging, France; ³Biopixs limited, Ireland; ⁴UPJV - Université

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Picardie Jules Verne, France; ⁵*FSJD - Fundació Sant Joan de Déu, Spain;* ⁶*Institució Catalana de Recerca i Estudis Avançats, Spain.* We have built a prototype integrating continuous wave near infrared spectroscopy and diffuse correlation spectroscopy with EEG apt for bilateral sensing in functional studies in neonates. We present its ex-vivo characterization and specifications.

M1B.5 • 09:30

A Compact, Self-Contained Module for Fast and Non-Invasive Blood Flow

Monitoring, Mirko Fornasier¹, Manish Verma¹, Faruk Beslija¹, Andres Quiroga¹, Lisa C. Kobayashi Frisk¹, Sumana Chetia¹, Marta Zanoletti¹, M Atif Yaqub¹, Daniel Senciales¹, Arnau Cobes Orteu¹, Jose Carlos Cifuentes¹, Youcef Lebour³, Fernando Linares³, Josep Maria Silvestre³, Turgut Durduran^{1,2}; ¹*ICFO-Institut de Ciéncies Fotóniques, Spain;* ²*Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain;* ³*ProCareLight, Spain.* We present a versatile module for speckle contrast optical spectroscopy, which is designed to fit a broad range of applications in which the integration of non-invasive monitoring of pulsatile blood flow is desired.

M1B.6 • 09:45

Exploring a New Spectral Range for Time-Domain Near Infrared Spectroscopy, Laura Di Sieno¹, Alessandro Bossi¹, Tommaso Palo¹, Lisa Kobayashi Frisk², Alessandro Torricelli^{1,3}, Ilias Tachtsidis⁴, Turgut Durduran^{2,5}, Antonio Pifferi^{1,3}, Alberto Dalla Mora¹; ¹Politecnico di Milano, Italy; ²ICFO-Institut de Ciències Fotòniques, The Barcelona Inst. of Science and Technology, Spain; ³Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ⁴Department of Medical Physics and Biomedical Engineering, Univ. College London, UK; ⁵Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain. We propose to use the 1064 nm wavelength for near-infrared diffuse optical spectroscopy both alone (to retrieve concentration of only O₂Hb or as a second wavelength (if also the HHb concentration has to be computed).

Room: ICM Room 22b 08:30 -- 10:00 M1C • OCT Applications

Presider: Brendan Kennedy; Nicolaus Copernicus Univ., Poland

M1C.1 • 08:30

Multi-MHz-OCT Endoscopic Imaging with an Automated Pullback Mechanism, Awanish P. Singh¹, Madita Göb¹, Sazgar Burhan¹, Nikolay Tesmer¹, Wolfgang Draxinger¹, Simon Lotz¹, Berenice Schulte², Mark Ellrichmann², Robert Huber¹, Maik Rahlves¹; ¹Univ. of Lübeck, Germany; ²Interdisciplinary Endoscopy, Medical Department I, Univ. Hospital Schleswig-Holstein, Germany. We present an automated pullback mechanism for MHz-OCT rectoscopy to address non-uniform motion artifacts via consistent probe retraction. High-resolution images of a test sample demonstrate uniform frame spacing, reduced distortion, and improved imaging accuracy, validating its potential for *in-vivo* clinical applications.

M1C.2 • 08:45

OCT-Based Three-Dimensional Multi-Parametric Imaging of the Cerebral Microcirculation, Jianbo Tang¹; ¹SUSTech, China. We present an Optical Coherence Tomography (OCT)-based imaging technology for the measurement of the microvascular

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

network's three-dimensional (3D) structure, blood flow velocity, and blood flow transit time.

M1C.3 • 09:00

Ultra-Fast Two-Dimensional Vibration Vector Measurements Based on Optical Coherence Tomography, Tillmann Spellauge^{3,1}, Ben Elsmore¹, Darven Murali Tharan^{3,1}, Marco Bonesi^{3,1}, Jami Shepherd^{3,1}, Craig Radford², Frederique Vanholsbeeck^{3,1}; ¹Department of Physics, Univ. of Auckland, New Zealand; ²Inst. of Marine Science, Leigh Marine Laboratory, Univ. of Auckland, New Zealand; ³The Dodd-Walls Center for Photonic and Quantum Technologies, New Zealand. We present a dual-beam depth-resolved vibrometry system for measurements of vibration vectors. The system recovers vibration angle and absolute amplitude in two dimensions with unprecedented measurement times of only 0.5 seconds for a full B-scan.

M1C.4 • 09:15

Depth-Extended ex-Vivo Ocular Tissue Imaging Using Spatial Phase-Resolved Optical Coherence Microscopy, Shrivatsan Rajagopalan¹, Ansel Chen¹, Jun Song¹, Shuichi Makita², Yoshiaki Yasuno², Joanne Matsubara⁴, Pierre Lane³, Myeong Jin Ju^{4,1}; ¹School of Biomedical Engineering, Univ. of British Columbia, Canada; ²Computational Optics Group, Univ. of Tsukuba, Japan; ³Integrative Oncology, BC Cancer Research Center, Canada; ⁴Department of Ophthalmology & Visual Sciences, Univ. of British Columbia, Canada. Spatial phase-resolved optical coherence microscopy configuration enables a single-shot cellular resolution ocular tissue imaging with extended depth-of-focus realized by a simple numerical refocusing algorithm without any sophisticated phase correction process.

M1C.5 • 09:30

Development of Multi-View Optical Coherence Tomography (OCT) With a Registration Algorithm Combining Refractive Index Correction for Tooth Imaging, Yin-Shen Cheng¹, Pei-chen Sung¹, Zi-Wen Kao¹, Fang-Ying Hua², Ting-Hao Chen¹, Chuan-Bor Chueh¹, Yin-Lin Wang², Hsiang-Chieh Lee^{3,4}; ¹*Graduate Inst. of Photonics and Optoelectronics, National Taiwan Univ., Taiwan;* ²*Department of Dentistry, National Taiwan Univ. Hospital, Taiwan;* ⁴*Department of Electrical Engineering, National Taiwan Univ., Taiwan.* In this study, a novel swept-source OCT system is proposed for dental diagnosis. With in-house developed refractive index correction-based image stitching algorithm, the results show the feasibility of our system and enhancement of image quality.

M1C.6 • 09:45

Optical Coherence Tomography and Elastography of Fresh Human Prostate, Marta K. Skrok¹, Szymon Tamborksi¹, Matt Hepburn¹, Mateusz Maniewski^{2,3}, Lukasz Szylberg^{2,3}, Brendan F. Kennedy¹; ¹Nicolaus Copernicus Univ., Poland; ²Department of Tumor Pathology and Pathomorphology, Oncology Centre, Poland; ³Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Poland. Developing more accurate prostate cancer diagnostic methods and procedures for nerve-sparing surgery is a continuing challenge. Here, we evaluate the potential of optical coherence tomography and elastography to visualize prostate microarchitecture toward improving intraoperative decision-making.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 5

08:30 -- 10:00 M1A • Photodynamic Therapy I

Presider: Lothar Lilge: Univ. Health Network, Canada

M1A.1 • 08:30

In-Vitro Investigations on Combining 5-ALA-PDT With Berbamine as a Multimodal Therapy Approach for Urinary Bladder Cancer, Muriel S. Kabus¹, Maximilian Aumiller¹, Adrian Rühm¹, Ronald Sroka¹, Heike Pohla¹; ¹*LIFE-Center, LMU Munich, Germany.* Berbamine was found to enhance the accumulation of 5-ALA induced protoporphyrin IX as photosensitizer, leading to increased urinary bladder cancer cell destruction after irradiation. Additionally, increased PDT efficiency correlated with increased ROS generation.

M1A.2 • 08:45

PDT Dosimetry Considerations for Endovascular PDT Aimed at Downstage "Borderline Resectable" Pancreatic Cancers, Lothar Lilge¹, Alain Garcia Vazquez², Tina Saeidi³, Juan Verde², Fanélie Wanert², Axel Schmid⁴, Lee Swantrom², stephen Bown⁵, Arjen Bogaards⁶; ¹Princess Margaret Hospital, Canada; ²IHU Strasbourg, Inst. for image-guided surgery, France; ³Medical Biophysics, Univ. of Toronto, Canada; ⁴Radiology, Univ. Hospital Erlangen, Germany; ⁵Univ. College London, UK; ⁶Vascular Oncology Biotechnologies B.V., Netherlands. Endovascular light delivery for PDT of pancreatic cancer is investigated as an approach to clear tumours encasing major blood vessels in the pancreas as a means to downstage the patients and render them suitable for further surgical removal of their tumour.

M1A.3 • 09:00

Photodynamic Therapy Potential of *Ruta Chalepensis* Extracts: Anticancer and Photosensitizing Effects, Cennet Özay¹, Emel Bakay², Nermin Topaloglu¹; ¹*Izmir Katip Celebi Univ., Turkey;* ²*Deparment of Pharmacy, Åbo Akademi Univ., Finland. Ruta chalepensis* extract (RCOE) exhibited significant ROS generation under photodynamic therapy, with PDT10 and PDT25 inducing 4-fold and 8-fold increases, respectively. This suggests its potential as a plantbased photosensitizer for PDT applications in cancer treatment.

M1A.4 • 09:15

Optical Instrumentations Monitoring Dosimetric Parameters for Photodynamic

Therapy, Buhong Li¹; ¹*Hainan Univ., China.* Emerging optical systems or instrumentations for monitoring dosimetric parameters, including light distribution and dose, tissue optics, photosensitizer, oxygen, and singlet oxygen during photodynamic therapy (PDT) were summarized. The challenge and perspective for establishing PDT dosimetry are provided.

M1A.5 • 09:30

The Effects of Pioglitazone on Indocyanine Green-Mediated Photodynamic Therapy Against Papillary Thyroid Cancer, Derya Sema Yaman Kalender^{1,2}, Mehmet Eren Kalender³, Nermin Topaloglu⁴; ¹Department of Biomedical Technologies, Inst. of Natural and Applied Sciences, Izmir Katip Celebi Univ., Turkey; ²Department of Endocrinology and Metabolism, Atatürk Training and Research Hospital, Izmir Katip Celebi Univ., Turkey; ³Department of Medical Oncology, Atatürk Training and Research Hospital, Izmir Katip Celebi Univ., Turkey; ⁴Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi Univ., Turkey. This study evaluated Indocyanine Green-based photodynamic therapy combined with pioglitazone for papillary thyroid cancer. Results show a synergistic

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

effect, reducing tumor cell viability while minimizing damage to normal thyroid cells.

M1A.6 • 09:45

Improvement of Photodynamic Action in Ovarian Cancer Cells Through PBM Pre-Treatment and Multifunctional Mesoporous Silica Nanoparticles, Busra Sirek^{1,2}, Özlem Yildiz³, Didem Sen Karaman¹, Nermin Topaloglu¹; ¹Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi Univ., Turkey; ²Department of Biomedical Technologies,Inst. of Natural and Applied Sciences, Izmir Katip Celebi Univ., Turkey; ³Department of Biomedical Engineering, Institue of Natural and Applied Sciences, Izmir Katip Celebi Univ., Turkey: Photodynamic therapy was combined with photobiomodulation to improve the anticancer efficacy in the presence of curcumin-loaded MSNs against ovarian cancer cells. PBM pre-treatment at red and near-infrared wavelengths enhanced photodynamic action and ROS production.

Room: ICM Room 5

10:30 -- 12:00 M2A • ECBO Plenary Session

Presider: Hamid Dehghani; Univ. of Birmingham, UK and Peter So; Massachusetts Inst. of Technology, USA

10:30 (Plenary)

Harnessing Label-Free Two-Photon Microscopy for Dynamic Imaging of Cellular Metabolism and Matrix Remodeling in Living Tissues, Irene Georgakoudi¹; ¹*Thayer Engineering at Dartmouth, USA.* Label-free two-photon microscopy leveraging endogenous fluorescence and second harmonic generation enables dynamic assessment of cellular metabolism, extracellular matrix remodeling, cell-cell and cell-matrix interactions. This information is critical for advancing diagnostics, therapeutic monitoring, and understanding of disease progression, especially when informed by complementary tools, such as transcriptomics.

11:15 (Plenary)

Optical Frontiers in Reproductive Health: Imaging, Manipulation, and Measurement at the Start of Life, Kishan Dholakia¹; ¹Univ. of St Andrews, UK. There is a burgeoning need to enhance assisted reproductive technologies to ultimately improve IVF outcomes. I will describe the use of a range of advanced photonics-based approaches of light sheet microscopy, photopolymerisation, optical trapping and digital holographic microscopy for this purpose.

Room: ICM Hall B0 12:00 -- 14:00 M3A • Joint Posters Session I

M3A.1

Large Field of View Correction with Refractive Adaptive Optics in 2-Photon

Microscopy, Antonio Vanzo¹, Yin-Tzu Hsieh², Dong-Han Li², Pin-Chun Liao², Jye-Chang Lee², Shi-Wei Chu², Stefano Bonora¹; ¹*Istituto di Fotonica Nanotecnologie CNR, Italy;* ²*Department of Physics, National Taiwan Univ., Taiwan.* We present a first implementation of a multi-conjugated adaptive optics system in a two-photon microscope to enhance contrast in high-speed

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

volumetric imaging of neuron networks in the living brain.

M3A.2

Chemometrics-Enhanced Infrared Spectroscopy: an Advanced Approach for Biomedical Research on Diabetes Mellitus, Mohamed E. Abdelmonaem^{1,3}, Chiedozie Ugwoke², Armin Alibegović⁴, Erika Cvetko², Joze Grdadolnik¹, Anja Šerbec², Nejc Umek², Barbara Zupančič¹; ¹Laboratory for Molecular Structural Dynamics, Theory Department, National Inst. of *Chemistry, Slovenia;* ²Inst. of Anatomy, Faculty of Medicine, Univ. of Ljubljana, Slovenia; ³Biotechnical Faculty, Univ. of Ljubljana, Slovenia; ⁴Inst. of Forensic Medicine, Faculty of Medicine, Univ. of Ljubljana, Slovenia. The study uses chemometrics-enhanced FTIR spectroscopy to detect diabetes-induced changes in the composition of skeletal muscles. This method paves its way into medicine as it outperforms traditional assays providing comprehensive data with minimal sample preparation.

M3A.3

Investigation of High-Power Laser-Driven X-Rays for Photodynamic Therapy, Viorel Nastasa¹, Angela Staicu², Mihaela Balas³, Ana Maria Udrea², Liviu Neagu¹, Andi Cucoanes¹, Mihaela Bacalum⁴, Mihai Boni², Ionut Relu Andrei², Petru Ghenuche¹, Domenico Doria¹, Ionut Ungureanu²; ¹*ELI-NP, Romania;* ²*Laser Department, INFLPR, Romania;* ³*Faculty of Biology, Univ. of Bucharest, Romania;* ⁴*DFVM, IFIN-HH, Romania.* While PDT offers advantages such as minimal invasiveness and low systemic toxicity, its limited tissue penetration necessitates novel delivery strategies. To overcome this limitation, we used scintillating nanoparticles (NPs) to convert ionizing radiation into visible light, thus activating nearby photosensitizers.

M3A.4

Attention-Based Neural Network for Multi Class Classification of Human Skin Carcinoma Using in-Vivo Autofluorescence and Diffuse Reflectance Spectroscopy, Dongqin Ni^{1,2}, Marie Camonin³, Valentin Kupriyanov³, Marine Amouroux³, Grégoire Khairallah⁴, Walter Blondel³, Martin Hohmann^{1,2}; ¹Inst. of Photonics Technologies, Germany; ²Erlangen Graduate School in Advanced Optical Technologies, Germany; ³Université de Lorraine, CNRS, CRAN UMR 7039, France; ⁴Department of Plastic, Aesthetic and Reconstructive Surgery, Metz-Thionville Regional Hospital, France. This contribution presents an attention-based neural network model developed to classify skin carcinomas, actinic keratosis and normal skin from multimodal spectroscopy on 131 patients. Preliminary results show accuracy and f1-score of 64 % and 0.44 respectively.

M3A.5

Analysis of Vital Signs from Wearable Sensor Data for Early Detection of Cardiovascular Risks, Abayomi D. Babalola¹, Manish Tripathi², Faiyaz Ahamad²; ¹Federal Polytechnic Ile-oluji, Nigeria; ²computer science and Engineering, Integral Univ. lucknow, India. Machine learning predicts cardiovascular risk using real-time vital signs, with 98.99% accuracy achieved using Random Forest and XGBoost, and wearable sensors enhance remote monitoring and early detection.

M3A.6

Shot-Noise Limited Tunable Stimulated Raman Scattering Microscopy and its Application for Virtual Histology, Naveen Gajendra Kumar², Sandro Heuke¹, Barbara Sarri¹, Elliot Cornet¹, Yong Jian Wang², Romain Appey³, Hervé Rigneault¹; ¹Institut Fresnel, France; ²Lightcore Technologies, France; ³APHM, France. Stimulated Raman scattering (SRS) microscopy is a

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

nonlinear imaging technique that visualizes chemical composition by detecting molecularvibrational bonds. We present a shot-noise limited, tunable SRS Microscopy scheme optimized for fast virtual histology, fingerprint imaging etc.

M3A.7

Emission Integral Effect with Temperature Gradients in Mid-Infrared Passive Spectroscopic Imaging, Daichi Anabuki¹, Hibiki Yano¹, Ruka Kobashi², Yuto Mukaihara², Akira Nishiyama³, Kenji Wada³, Akiko Nishimura³, Ichiro Ishimaru²; ¹*Graduate school of science for creative emergence, Kagawa Univ., Japan;* ²*Faculty of engineering and design, Kagawa Univ., Japan;* ³*Faculty of medicine, Kagawa Univ., Japan.* By measuring mid-infrared radiation from the human body, we have the potential to measure blood glucose non-invasively. To develop the theory of the proposed method, we investigated the effect of temperature gradients on mid-infrared radiation.

M3A.8

Dimensionality Reduction Approaches for use With Deep Learning Classification Algorithms on Chemical Imaging Data, Rahul Suresh¹, Mohd Rifqi Rafsanjani¹, Karin Jirstrom², Arman Rahman³, William Gallagher⁴, Aidan Meade¹; ¹School of Physics, Clinical and Optometric Sciences, Technological Univ. Dublin, Ireland; ²Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences,, Univ. of Lund, Sweden; ³School of Medicine, Univ. College Dublin, Ireland; ⁴UCD School of Biomolecular and Biomedical Science, UCD Conway Inst.,, Univ. College Dublin, Ireland. Classification of breast cancer subtype is crucial for clinical decision support. This work demonstrates significant impact of dimensionality reduction methodology upon deep-learning classification performance with chemical imaging data.

M3A.9

A Frugal Multispectral Imaging Solution - 2SPID - to Identify Uropathogens via SVM and ANN Classification., Denis F. Leroux¹, Alan Blanchet², Corinne Davenas¹, Louis Lac², Yann Le Bihan¹, Corine Fulchiron¹; ¹BioMérieux S. A., France; ²Neovision, France. Targeting clinical laboratories from low-resource settings, bioMérieux created a low-cost multispectral-imaging device for Uropathogens identification from bacterial colonies on agar. Species classification using 2D-CNN and 1D-SVM architectures are compared with/without use of agar 'context' information.

M3A.10

Evaluation of E-Cigarette Users Saliva by FTIR Spectroscopy, Camila Lopes Ferreira¹, Sara Maria Santos Dias da Silva¹, Emanuelly C. dos Santos Rocha¹, Yasmin Ferreira Azevedo dos Reis¹, Jean P. Moraes¹, Darcio Kitakawa², Luis Felipe Carvalho^{1,2}; ¹UNITAU - Univ. of Taubaté, Brazil; ²CK Estomatologia, Brazil. Salivary composition of electronic cigarette users was investigated and compared with that of non-users, employing FTIR spectroscopy. It was revealed significant modifications in spectral bands associated with proteins, lipids and volatile compounds.

M3A.11

Deep Learning-Based Al Model for Brain Tumor Segmentation in Digital Pathology and Terahertz Imaging, Seung Jae Oh¹, Hyeon Sang Bark², Inhee Maeng¹, Chul Kang², Seok-Gu Kang¹, Han-Cheol Ryu³, Se Hoon Kim¹, Young Bin JI²; ¹Yonsei Univ., Korea (the Republic of); ²APRI, Korea (the Republic of); ³Sahmyook Univ., Korea (the Republic of). This study

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

presents a deep learning-based AI model for brain tumor segmentation in digital pathology images. We developed and trained the model with DEEP:PHI, employing U-Net and attention U-Net architectures.

M3A.12

Photobiomodulation: The Effect of Linearly Polarized Light on Wound Healing, You-rim Park¹, Seo Yeon Lee¹, Yu Jeong Kim¹, Joo Beom Eom¹; ¹Dankook Univ., Korea (the Republic of). We fabricated a photobiomodulation (PBM) system using polarized light to evaluate wound healing effect. Results showed that S-wave polarization, despite lower energy, promoted better healing than unpolarized light, suggesting its potential for enhancing skin regeneration.

M3A.13

Hyperspectral Imaging-Based Tissue Oxygen Saturation Mapping for Assessing Vascular Reactivity, Chaeryeong Jang¹, Taeyeon Gil¹, Onseok Lee¹; ¹Soonchunhyang Univ., Korea (the Republic of). We proposed the effectiveness of hyperspectral imaging-based tissue oxygen saturation (StO₂) mapping. The method revealed differences in vascular function, even in the normal blood pressure range, suggesting its applicability for early vascular health assessment.

M3A.14

Study of the Effect of Breathing Exercises on Cerebral and Extra-Cerebral

Hemodynamics With TD-FNIRS, Charly Caredda¹, Letizia Contini², Bruno Montcel¹, Rebecca Re^{2,3}; ¹Creatis, France; ²Dipartimento di Fisica, Politecnico di Milano, Italy; ³Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy. We analyzed physiological and TD-fNIRS signals during breathing exercises. Results showed cardiovascular-respiratory synchronization during modulated breathing and strong coherence between cerebral TD-NIRS signals and peripheral blood volume during breath holds, suggesting autonomic nervous system involvement.

M3A.15

Automated Registration of Intraoperative Optical Images with Preoperative MRI, Charly Caredda¹, Eric Van-Reeth^{1,2}, Fernand Fort¹, Michaël Sdika¹, Thiébaud Picart³, Jacques Guyotat^{3,1}, Fabien C. Schneider⁴, Bruno Montcel¹; ¹*Creatis, France;* ²*Département Sciences du Numérique, CPE Lyon, France;* ³*Cranial Neurosurgical Department, Hospices Civils de Lyon, France;* ⁴*Université Jean Monnet Saint-Étienne, France.* We developed an image processing pipeline to register preoperative MRI with intraoperative optical images of the patient's brain. The pipeline is included in the clinical practice and the registration error was 1.43±0.72 mm. fMRI and intraoperative optical identifications were compared and showed a good correspondence.

M3A.16

Deep Learning-Based Prediction of Fractional Flow Reserve Using Optical Coherence Tomography, Juyeol Eom¹, Hyeong Soo Nam¹, Dong Oh Kang², Jin Won Kim², Hongki Yoo¹; ¹KAIST, Korea (the Republic of); ²Korea Univ. Guro Hospital, Korea (the Republic of). We propose a deep learning algorithm that utilizes OCT-derived morphological and biochemical features to predict continuous FFR changes along the coronary artery, improving stenosis localization and enhancing diagnostic decision-making for coronary artery disease.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

M3A.17

Hollow Core Fiber Based System Combined with Surface Enhanced Raman

Spectroscopy (SERS) for Ultra-Trace Detection of DNA Molecule, Navdeep Navdeep¹, anjika Kumari¹, Meenakshi meenakshi¹, Satish K. Dubey¹, Dalip Singh Mehta¹; ¹Indian Inst. of *Technology, Delhi, India.* This study presents an approach utilizing a hollow core fiber system and the SERS method for detection of Adenine, achieving limit of detection of 1nM. This method is beneficial for rapid identification of metabolic diseases.

M3A.18

Machine Learning-Enhanced Two-Photon Microscopy for the Detection of Esophageal Cancer Progression Through Collagen Analysis, Kausalya Neelavara Makkithaya¹, Ming-Che Chan², Wei-Shiuan Tseng², Nirmal Mazumder¹, Guan-Yu Zhuo²; ¹Manipal Academy of *Higher Education, India;* ²National Yang-Ming Chiao-Tung Univ., Taiwan. We demonstrate a novel approach combining two-photon microscopy with machine learning algorithms to analyze collagen organization in esophageal tissues, enabling differentiation between squamous cell carcinoma and high-grade dysplasia through quantitative extracellular matrix assessment.

M3A.19

A System for Full-Body Dermoscopic Spectral Imaging at Visible and Near-Infrared Wavelengths, Edgars Kviesis-Kipge¹, Uldis Rubins¹, Jekaterina Tihomirova¹, Ilze Irbe¹, Marta Skrastina¹, Janis Spigulis¹; ¹Univ. of Latvia, Latvia. A full-body skin dermatoscopy device was developed with three visible wavelengths (450, 520, 638 nm) and clinically validated. It now includes a near-infrared (850 nm) channel to detect deeper skin inclusions like tumors. This update describes the added elements and presents the first infrared images of skin nevi.

M3A.20

Assisting Epilepsy Neurosurgery of Focal Cortical Dysplasia With Multimodality Fluorescence and SpiderMass Spectroscopy : a Phantom Study, Angèle Denis^{1,2}, Arthur Gautheron^{1,3}, Pierre-Aurélien Beuriat^{4,5}, Isabelle Fournier², Bruno Montcel¹; ¹Université de Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSALyon, Inserm U1206, CREATIS UMR 5220, France; ²Université de Lille, Inserm U1192, Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), France; ³CPE, France; ⁴Service de neurochirurgie Pédiatrique, Hospices Civils de Lyon, France; ⁵Université Claude Bernard Lyon 1, France. The efficiency of neurosurgery for focal cortical dysplasia depends on the delineation of the epileptogenic zone. We aim to improve diagnostic accuracy by comparing fluorescence spectroscopy and Spidermass spectrometry of protoporphyrin IX phantoms.

M3A.21

FTIR Exploratory Analysis of Phenol Peel Formulas Developed Over 60 Years: Impact on Efficacy and Safety, Fernando T. Gonçalves¹, Sara J. Michalopoulos², Rosangela T. Vitor⁴, Nelson Mauricio-Junior³, Rogerio L. Romeiro¹, Luis Felipe Carvalho², Sheila C. Cortelli^{1,2}; ¹São Leopoldo Mandic Faculty, Brazil; ²UNITAU - Univ. of Taubaté, Brazil; ³Neofarma Manipulation Pharmacy, Brazil; ⁴Rhaizes Phamacy, Brazil. Main phenol chemical peels were analyzed by FTIR. Peaks in the regions 3000 – 3500 (cm⁻¹) differed between croton-oil and no croton-oils. The key peaks revealed essential biochemical components with potential biological roles.

M3A.22

Impact of Passive Leg Rising Test on the Remote Photoplethysmography Signal Waveform, Zbignevs Marcinkevics¹, Uldis Rubins¹, Una U. Zelca¹, Davids Obuhovskis¹, Andris

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Grabovskis¹; ¹Univ. of Latvia, Latvia. This study examines remote photoplethysmography (rPPG) waveform changes during the Passive Leg Raising Test to assess fluid responsiveness non-invasively. Results suggest rPPG-derived reflection index (RI) correlates with hemodynamic changes, offering a potential alternative to invasive monitoring.

M3A.23

Scanning Wide-Field Tomography for High-Speed Mesoscale Volumetric Imaging of Biodynamics in Vivo, Jiazhen Zhai¹, Junle Qu², Lingjie Kong¹; ¹*Tsinghua Univ., China;* ²*Shenzhen Univ., China.* High-speed, mesoscale volumetric imaging is highly desired but unavailable yet. We propose the scanning wide-field tomography, taking the advantages of random-access scanning and Fourier light-field microscopy, for imaging over ~4.6×4.6×0.32 mm³ at high spatio-temporal resolutions.

M3A.24

Diagnostic Biomolecule Detection via Combination of Metasurface Platform and Artificial Intelligence, Jin Tae Kim¹, Jinke Li², Hongliang Li², Hyo-Young Cho¹, Jin-Soo Kim³, Duk-Yong Choi⁴, Chenxi Wang², Sang-Shin Lee²; ¹*Electronics and Telecom Research Inst, Korea (the Republic of);* ²*Kwangwoon Univ., Korea (the Republic of);* ³*Korea Univ., Korea (the Republic of);* ⁴*Australian National Univ., Australia.* We propose an innovative diagnostic biomolecule detection method by using a combination of metasurface platform and artificial intelligence. We achieved successful detection of C-reactive protein (CRP) concentrations with over 99 % accuracy.

M3A.25

Autofluorescence Photobleaching Mapping of non-Melanoma Skin Cancer and Rare Disease Skin Lesions, Emilija V. Plorina¹, Alexey Lihachev¹, Ilze Lihacova¹, Norbert Kiss³, Dmitrijs Bliznuks²; ¹Inst. of Atomic Physics and Spectroscopy, Univ. of Latvia, Latvia; ²Inst. of Applied Computer Systems, Riga Technical Univ., Latvia; ³Department of Dermatology, Venereology and Dermatooncology, Semmelweis Univ., Hungary. Autofluorescence photobleaching imaging is a temporal measurement method of tissue autofluorescence which has been studied previously as a potential approach to early diagnosis of skin cancer. This study analyzes the intensity and photobleaching rate maps of non-melanoma skin cancer lesions and related rare disease skin lesions.

M3A.26

Employing Augmentation and Batch Normalisation With Chemical Imaging Data for Classification of Cancer Subtype Within a Deep Learning Approach, Rahul Suresh¹, Mohd Rifqi Rafsanjani¹, Karin Jirstrom², Arman Rahman³, William Gallagher⁴, Aidan Meade¹; ¹School of Physics, Clinical and Optometric Sciences, Technological Univ. Dublin, Ireland; ²Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Univ. of Lund, Ireland; ³UCD School of Medicine, UCD Conway Inst., Univ. College Dublin, Ireland; ⁴UCD School of Biomolecular and Biomedical Science, Univ. College Dublin, Ireland. Data augmentation and batch normalisation strategies applied to high-dimensional chemical imaging data are explored in terms of their impact upon performance of deep learning algorithms for cancer subtype classification.

M3A.27

Detection of Urea and Creatinine in Urine by Surface-Enhanced Raman Spectroscopy, Anjika Kumari¹, Navdeep Navdeep¹, Meenakshi meenakshi¹, Ekta Srivastava¹,

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Satish K. Dubey¹, Dalip Singh Mehta¹; ¹*Indian Inst. of Technology Delhi, India.* This article proposed a SERS technique with chemical route method of silver (Ag) nano dendrites (NDs) for rapid detection of urea and creatinine levels in urine for clinical diagnoses of chronic kidney disease.

M3A.28

Toward Printing the Brain: a Microstructural Ground Truth Phantom for MRI, Franziska Chalupa-Gantner¹, Michael Woletz², Benedikt Hager³, Alexander Ricke⁴, Siawoosh Mohammadi⁵, Stefan Binder¹, Stefan Baudis⁴, Aleksandr Ovsianikov¹, Christian Windischberger², Zoltan Nagy⁶; ¹Inst. of Materials Science and Technology, TU Wien, Austria; ²Center for Medical Physics and Biomedical Engineering, Medical Univ. of Vienna, Austria; ³Department of Biomedical Imaging and Image-guided Therapy, Medical Univ. of Vienna, Austria; ⁴Inst. of Applied Synthetic Chemistry, TU Wien, Austria; ⁵Max Planck Research Group MR Physics, Max Planck Inst. for Human Development, Germany; ⁶7Laboratory for Social and Neural Systems Research, Univ. of Zurich, Switzerland. dMRI is a promising imaging technique for examining the human brain. Validation of dMRI is challenging, and specialized test samples, so-called brain phantoms, that mimic the tissue microstructure authentically, are needed. High-resolution 3D printing by means of 2-Photon Polymerization allows for the manufacturing of such novel brain phantoms.

M3A.29 Examination of the Effect of Choice of Performance Metric for Hyperparameter Tuning and Model Performance in Deep Learning Classification Approaches With Chemical Imaging Data, Rahul Suresh¹, Mohd Rifqi Rafsanjani¹, Karin Jirstrom², Arman Rahman³, William Gallagher⁴, Aidan Meade¹; ¹School of Physics, Clinical and Optometric Sciences, Technological Univ. Dublin, Ireland; ²Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Univ. of Lund, Sweden; ³UCD School of Medicine, UCD Conway Inst., Univ. College Dublin, Ireland; ⁴UCD School of Biomolecular and Biomedical Science, UCD Conway Inst., Univ. College Dublin, Ireland. Effective hyperparameter tuning of deep learning algorithms for highly imbalanced classification problems with chemical imaging data is demonstrated to crucially require the careful choice of performance metric.

M3A.30

Tuning the Loss Function of Deep Learning Convolutional Networks for Optimisation of Classification Performance With Chemical Imaging Datasets, Rahul Suresh¹, Mohd Rifqi Rafsanjani¹, Karin Jirstrom², Arman Rahman³, William Gallagher⁴, Aidan Meade¹; ¹School of *Physics, Clinical and Optometric Sciences, Technological Univ. Dublin, Ireland;* ²Division of *Oncology and Therapeutic Pathology, Department of Clinical Sciences, Univ. of Lund, Sweden;* ³UCD School of Medicine, UCD Conway Inst., Univ. College Dublin, Ireland; ⁴UCD School of Biomolecular and Biomedical Science, UCD Conway Inst., Univ. College Dublin, *Ireland.* Loss functions are a crucial element of designing deep learning classification models for imbalanced classification tasks. Here we demonstrate the impact of various loss functions on classification of breast cancer subtype with chemical imaging datasets.

M3A.31

Hybrid Photonic Circuits for High-Precision Diagnostics, Evangelos Marakis¹, Savvas Papamakarios^{1,2}, Maria Farsari¹, Zacharakis Giannis¹; ¹*FORTH-IESL, Greece;* ²*Physics, National and Kapodistrian Univ. of Athens, Athens, Greece.* We present a hybrid photonic platform integrating Two-Photon Polymeriza-tion (TPP) and UV lithography for biomechanical diagnostics. Optimized via WaveSim, it enables compact, high-resolution optical circuits,

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

bridging rapid prototyping and scalable fabrication for biomedical sensing and micro-optical imaging.

M3A.32

Designing a Raman System for Droplets Microfluidics, Sergio Quintero¹, Pedro Braga-Fernandes^{1,2}, Alar Ainla¹, Lorena Dieguez¹, Sara Abalde¹; ¹Dieguez Research group, International Iberian Nanotechnology Laboratory, Portugal; ²Aveiro Univ., Portugal. In this work we proposed the design and assembly of a built in-house Raman microscope system using a Raman fiber probe. The engineered device can be useful in different applications in droplets microfluidics field.

M3A.33

Influence of Substrate Selection for Thin ex-Vivo Specimens on Hyperspectral Imaging Measurements of Silicone Phantom, José Alberto Gutiérrez Gutiérrez^{1,2}, Verónica Mieites Alonso^{1,2}, Olga M. Conde^{1,2}; ¹Universidad de Cantabria, Spain; ²Valdecilla Health Research Insitute (IDIVAL), Spain. Hyperspectral imaging (HSI) in medical diagnostics is affected by substrate selection, especially for thin or low-scattering samples. This study analyzes silicone phantoms with varying aluminum oxide concentrations, emphasizing substrate influence in VisNIR and SWIR measurements.

M3A.34

Melanoma Fixation for OCT Imaging: How Long is Too Long?, Verónica Mieites Alonso^{1,2}, Shayamita Ghosh², José A. Gutiérrez-Gutiérrez^{1,2}, Mónica L. Fanarraga², Olga M. Conde^{1,2}; ¹Universidad de Cantabria (UC), Spain; ²Valdecilla Health Research Insitute (IDIVAL), Spain. This study evaluates the impact of fixation duration on the optical properties of melanoma. OCT measurements showed significant changes in attenuation between 2-6 hours of fixation, highlighting the need for standardized fixation protocols for imaging.

M3A.35

Synergistic Antibacterial Effects of α-Mangostin and Photodynamic Therapy Against Multidrug-Resistant Pathogens, Mateusz Guzniczak², Dorota Wojnicz¹, Kamila Korzekwa³, Maciej Wernecki³, Agnieszka Ulatwoska-Jarza², Igor Buzalewicz², Dorota Tichaczek-Goska¹; ¹Department of Biology and Medical Parasitology, Faculty of Medicine, Wroclaw Medical Univ., Poland; ²Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw Univ. of Science and Technology, Poland; ³Department of Microbiology, Faculty of Biological Sciences, Univ. of Wroclaw, Poland. This study investigates α-mangostin and photodynamic therapy as potential enhancers of antibacterial activity against uropathogenic bacteria. Using digital holotomography and confocal microscopy, we demonstrate improved bacterial penetration and photosensitizer accumulation, suggesting a promising antimicrobial strategy.

M3A.36

Co-Robot Supported Air-Jet Based Optical Coherence Elastography Towards in-Situ Brain Tumor Tissue Delineation, Nicolas Detrez¹, Dirk Theisen-Kunde¹, Wolfgang Draxinger², Thies Hörcher¹, Veit Danicke¹, Sazgar Burhan², Jessica Kren³, Matteo Bonsanto³, Robert Huber^{2,1}, Ralf Brinkmann^{1,2}; ¹*Medical Laser Center Luebeck, Germany;* ²*Inst. of Biomedical Optics, Germany;* ³*Department of Neurosurgery, Univ. Medical Center Schleswig-Holstein, Germany.* Accurate tumor delineation in neurosurgery is challenging. We developed an *insitu* optical coherence elastography system using air-jet excitation and phase based full-range
Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

OCT. The challenges in transitioning from ex vivo to in-situ application are presented.

M3A.37

Wide-Field Line-Scanning Multispectral Fluorescence Lifetime Imaging With a CMOS-

SPAD Array, Matthew Douglas¹, Andrew Green¹, Michael Tanner¹; ¹*Heriot Watt Univ., UK.* We demonstrate a wide-field fluorescence lifetime imaging system using a single-photon avalanche diode (SPAD) line array for applications in disease detection. Time-multiplexed excitation pulses yield subtle differences in the fluorescence lifetime of a plant sample.

M3A.38

Enhancing Skin Tone Representation in Optical Phantoms, Anni S. Ranta-Lassila¹, Alexey Popov¹; ¹VTT Technical Research Centre of Finland, Finland. Optical biotissue-mimicking phantoms enable standardized testing and validation conditions for optical devices. To better represent the optical variability of human skin, we fabricated phantoms with a range of skin tones for more inclusive assessments.

M3A.39

Diagnosys of Oral Cancer Using FTIR Hyperspectral Images and Linear Discriminant Analysis, Daniella L. Peres¹, Daniela d. Silva¹, Denise M. Zezell¹; ¹Universidade de São Paulo, Brazil. This study used FTIR hyperspectral imaging (HSI) and LDA to classify 48 OSCC and 48 healthy tissue samples, achieving 85\% accuracy. These results show that HSI with LDA can aid early OSCC detection.

M3A.40

SEIRA Enhancement of Amoxicillin Detection Using Laser-Generated Gold

Nanoparticles, Vinicius P. Anjos^{1,2}, Daniela d. Silva¹, Danielle d. Laskowski³, Arandi G. Bezerra Junior³, Denise M. Zezell^{1,2}; ¹*Center for Lasers and Applications, Nuclear and Energy Inst., Brazil;* ²*Univ. of São Paulo, Brazil;* ³*Programa de Pós-Graduação em Física e Astronomia, Federal Univ. of Technology – Paraná, Brazil.* Our research demonstrates SEIRA-based detection of Amoxicillin using AuNP as an enhancing substrate. The approach boosts FTIR sensitivity, enabling precise molecular characterization. This method holds promise for pharmaceutical analysis and trace-level antibiotic.

M3A.41

Surface Enhanced Raman Spectroscopy as a Diagnostic Tool to Differentiate Cancerous and Non-Cancerous Oral Tissues, Nidhi Mehta¹, Pramila Thapa¹, Varun Surya², Deepika Mishra², Dalip Singh Mehta¹; ¹Indian Inst. Of Technology Delhi, India; ²Department of Oral Pathology and Microbiology, Centre for Dental Education & Research (CDER), b, AIIMS, Hauz Khas, New Delhi, 110016, India, India. A facile SERS substrate fabrication method for distinguishing cancerous and non-cancerous oral tissues is reported. The discrimination relies on biochemical changes occuring with developing malignancy. The study presents nanostructure morphology, SERS substrate fabrication and preliminary results for oral cancer detection using this SERS substrate.

M3A.42

Optical Metabolic and Morphological Undamaged Evaluation and NIR Suppression of 3D Scaffold-Based Cancer Models, Arooj Khalid¹, Valentina Pasquale², Sacco Elena², Marco Vanoni², Sergei Sokolovsky¹, Edik Rafailov¹; ¹Aston Univ., UK; ²Univ. of Milano-Bicocca, Italy. Development of 3D Melanoma- full-thickness skin equivalent (Melanoma-FSE) and non-

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

muscle invasive bladder cancer (NMIBC) models for studying the cancer progression metabolic and morphological characteristics as well as therapeutic effects of NIR 1267 nm.

M3A.43

Terahertz Spectroscopic Imaging for Brain Alterations Induced by Lymphatic

Dysfunction in the Head and Neck Region, Seung Jae Oh¹, Hwayeong Cheon², Dong-Cheol Woo², Seungwoo Cha², Yeon Ji Chae², Inhee Maeng¹, Jae Yong Jeon²; ¹Yonsei Univ., Korea (the Republic of); ²Asan Medical Center, Korea (the Republic of). Terahertz imaging reveals brain alterations caused by lymphatic dysfunction in the head and neck by detecting increased water content, cerebrospinal fluid imbalance, and neuro-inflammation, providing insights into neurological risks and potential diagnostic applications.

M3A.44

Selective Detection of Ca²⁺ Ions in Fetal Bovine Serum Using an InSb Grating Coupled Terahertz SPR Sensor, Zhi-mei Qi^{1,2}; ¹*Aerospace Information Research Inst., Chinese Academy of Sciences, China;* ²*School of Electronic, Electrical, and Communication Engineering, Univ. of Chinese Academy of Sciences, China.* An InSb grating with a period of 130 µm was prepared and used as a terahertz surface plasmon resonance (THz-SPR) sensor, and the selective detection of Ca²⁺ ions in fetal bovine serum was achieved by precipitating CaCO₃ formed in the serum sample onto the InSb grating.

M3A.45

A Monte Carlo Study to Assess the Effect of Skin Tone on non-Contact Measurements of Blood Oxygenation, Aleksi Leinonen¹, Markku Alamäki¹, Aki Mäyrä¹, Alexey Popov¹; ¹VTT Technical Research Centre of Finland, Finland. Monte Carlo simulations of light propagation in a 7-layer skin model were used to assess the effect of skin tone on the oxygenation calibration curves, with darker skin (with higher melanin content) exhibiting steeper slopes.

M3A.46

Optical Evaluation of the Impact of Filtration on Diagnostic Salivary Components, Somali Dhal¹, An H. Luu², Sanathana Konugolu Venkata Sekar¹, Siddra Maryam¹, Edward Fahy³, Richael N. Riordain³, Katarzyna I. Komolibus¹, Stefan Andersson-Engels¹, Nilushni Sivapragasam², Rekha Gautam¹; ¹*Tyndall National Inst., Ireland;* ²*School of Food and Nutritional Sciences, Univ. College Cork, Ireland;* ³*Cork Univ. Dental School and Hospital, Ireland.* This study investigates how filtration affects the biochemical composition of human saliva, aiming to standardize protocols and enhance the accuracy of Raman spectral analysis for diagnostic applications.

M3A.47

Automated Fluorescence Microscopy Imaging System With Deep Learning-Driven Analysis of Mitochondria Morphology for Rapid Drug Discovery Screening, Yuetong Jia¹, Edward N. Ward¹, Francesca W. van Tartwijk¹, Clemens F. Kaminski¹; ¹Univ. of Cambridge, UK. A fluorescence microscopy imaging system with advanced autofocus, automated screening, and Al-driven image processing is developed for individual cell screening to identify drug effects based on mitochondrial morphological changes.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

M3A.49

Operator-Free Optical Coherence Tomography with Automated Alignment and Artifact

Detection, Reuben J. Foo^{1,2}, Bingyao Tan^{1,2}, Damon Wong^{1,2}, Jacqueline Chua^{1,2}, Leopold Schmetterer^{1,2}; ¹Singapore Eye Research Inst., Singapore National Eye Centre, Singapore; ²SERI-NTU Advanced Ocular Engineering (STANCE), Singapore. We present a clinically validated automated OCT system integrating robotics and AI-driven artifact detection to enhance usability and ensure consistent image quality, which seeks to reduce reliance on skilled operators and improve efficiency in healthcare institutions.

M3A.50

FlowCyPy: A High-Fidelity Flow Cytometry Simulation Framework for Extracellular Vesicle Analysis, Martin Poinsinet de Sivry¹, Ton van Leeuwen¹, Edwin van der Pol¹; ¹Biomedical Engineering & Physics, Amsterdam UMC, Univ. of Amsterdam, Netherlands. FlowCyPy is an open-source simulation framework integrating physics-based fluidic, optical, and electronic models to predict extracellular vesicle detection in flow cytometry, enabling instrument optimization, calibration standardization, and improved sensitivity for < 200nm particles.

Room: ICM Room 11

14:00 -- 15:30

M4B • Clinical and Preclinical Applications of Diffuse Optics III *Presider: Nienke Bosschaart; Univ. of Twente, Netherlands*

M4B.1 • 14:00

Liver Steatosis Evaluation in Transplantation: Near-Infrared Diffuse Reflectance

Spectroscopy, Antoine Uzel¹, Michaël Sdika¹, Sophie Chopinet^{2,3}, Pauline Brige^{3,4}, Olivier Lopez^{3,4}, Bruno Montcel¹; ¹*CREATIS, France;* ²*Department of Digestive Surgery and Liver Transplantation, Hôpital la Timone, France;* ³*Aix Marseille Univ, LIIE, France;* ⁴*Aix Marseille Univ, CERIMED, France.* We present a novel approach for quantitative assessment of hepatic steatosis using near-infrared diffuse reflectance spectroscopy (NIR-DRS). Based on an analytical diffusion model, our method enables real-time evaluation of tissue composition. Validation on a murine model shows excellent correlation with histopathology.

M4B.2 • 14:15

Hyperspectral Imaging in the Visible and Short-Wave InfraRed on Freshly Resected Breast Cancer Specimens, Lorenzo Vinco^{2,1}, Andrea Rabolini¹, Dario Polli^{1,2}; ¹Politecnico di *Milano, Italy;* ²NIREOS, Italy. Abstract: The current workflow for intraoperative margin assessment is limited, with Hematoxylin&Eosine being the gold standard for tissue analysis. We show hyperspectral imaging is a promising tool for improving the identification of tumoral margins during surgery.

M4B.3 • 14:30

Thermal Denaturation of Deoxyhemoglobin: Evidence for a Previously Unreported Intermediate State, Alessandro Bossi¹, Paola Saccomandi¹, Antonio Pifferi¹; ¹*Politecnico di Milano, Italy.* We attempt to prove the existence of an unreported form of Methemoglobin, which arises from the treatment of deoxyhemoglobin, through the thermal treatment treatment of calf blood.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

M4B.4 • 14:45

Monitoring Fluid Responsiveness Using Hybrid Diffuse Optics During Passive Leg

Raising Maneuver, Marta Zanoletti¹, M. Atif Yaqub¹, Lorenzo Cortese¹, Caterina Amendola², Mauro Buttafava³, Davide Contini², Edgar Cortés⁴, Michele Lacerenza³, Sara Nogales⁴, Alessandro Torricelli^{2,5}, Jaume Mesquida⁴, Turgut Durduran^{1,6}; ¹*ICFO -Institut de Ciencies Fotoniques, Spain;* ²*Politecnico di Milano, Italy;* ³*Pionirs, Italy;* ⁴*Critical Care, Parc Taulí, Spain;* ⁵*Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy;* ⁶*Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain.* Fluid therapy is essential in hemodynamic resuscitation, but not all patients benefit. Passive leg raising predicts fluid responsiveness, necessitating reliable cardiac output (CO) monitoring. Here, we present a complementary approach using hybrid diffuse optics as a surrogate for CO monitoring.

M4B.5 • 15:00

Differences of Time-Domain NIRS-Derived Hemodynamic Parameters of the Vastus Lateralis Muscle With Age and Physical Activity, Marco Nabacino¹, Caterina Amendola¹, Letizia Contini¹, Davide Contini¹, Lorenzo Spinelli², Alessandro Torricelli^{1,2}, Andrea Pilotto³, Fulvio Lauretani⁴, Julian Alcazar^{5,6}, Martino Franchi⁷, Alberto Botter⁸, Simone Porcelli³, Rebecca Re^{1,2}; ¹Politecnico di Milano, Italy; ²Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ³Department of Molecular Medicine, Univ. of Pavia, Italy; ⁴Department of Medicine and Surgery, Univ. of Parma, Italy; ⁵GENUD Toledo Research Group, Faculty of Sport Sciences, Univ. of Castilla-La Mancha, Spain; ⁶CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Spain; ⁷Department of Biomedical Sciences, Univ. of Padua, Italy; ⁸Department of Electronics and Telecommunications, Politecnico di Torino, Italy. Skeletal muscle hemodynamic parameters of 59 volunteers from two age groups (middleaged and old) and two training levels were measured using Time-Domain Near-Infrared Spectroscopy. Significant differences were observed with training status, but not with age.

M4B.6 • 15:15

Understanding Skeletal Muscle's Vascular Function and Health with Time-Domain Near Infrared Spectroscopy, Rebecca Re^{1,2}, Letizia Contini¹, Caterina Amendola¹, Davide Contini¹, Lorenzo Spinelli², Alessandro Torricelli^{1,2}; ¹*Dipartimento di Fisica, Politecnico di Milano, Italy;* ²*Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy.* We propose a method based on fast time domain near infrared spectroscopy to study skeletal muscle's vasculature function and health. We present the method and in-vivo acquisitions during rest, contraction and recovery on 8 subjects.

Room: ICM Room 22b 14:00 -- 15:30 M4C • Light Sheet and In-Vivo Tissue Microscopy

Presider: Zacharakis Giannis; FORTH-IESL, Greece

M4C.1 • 14:00 (Invited)

Tomographic Flow Cytometry of Organoids Using Ultra-Fast 3D Two-Photon SLIDE Microscopy, Matthea Thielking¹, Gregory Berg¹, Christan Stock¹, Florian Sommer², Sebastian Karpf¹; ¹Universität zu Lübeck - BMO, Germany; ²Leibniz-Inst. for Virology, Germany. We present tomographic imaging flow cytometry (TomoFlow) for high-resolution, three-dimensional imaging of cellular tissue in flow. It leverages SLIDE, an ultra-fast two-photon microscopy

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

technique, for high penetration fluorescence imaging of organoids at high volume throughput.

M4C.2 • 14:30

Imaging Calcium Oscillations in Arabidopsis Root Hairs with Light-Sheet Fluorescence Microscopy, Giorgia Tortora¹, Emma Martinelli¹, Stefano Buratti², Alex Costa², Andrea Bassi¹, Alessia Candeo¹; ¹*Politecnico di Milano, Italy;* ²*Università degli Studi di Milano, Italy.* The employment of light-sheet fluorescence microscopy together with the development of customized software for image registration enables high-resolution imaging and fast, reliable analysis of calcium oscillations in root hairs of Arabidopsis thaliana plants.

M4C.3 • 14:45

SNR-Enhanced Single-Objective Two-Photon Oblique Light Sheet Microscopy with Low Repetition Rate Light Source, Jeonggeun Song¹, Wooijn Lee¹, Hyeong Soo Nam¹, Hamin Park², Young-Gyun Park², Hongki Yoo¹; ¹*Mechanical engineering, Korea Advanced Inst of Science & Tech, Korea (the Republic of);* ²*Bio & Brain engineering, Korea Advanced Inst of Science & Tech, Korea (the Republic of).* We developed a single-objective two-photon oblique light sheet microscope incorporating a pulse picker. By adjusting the laser repetition rate, we achieved high-SNR 3D fluorescence imaging across large areas of thick brain tissue.

M4C.4 • 15:00

Miniature Achromatic Microendoscopic Objective for 2-Photon Diagnostic

Imaging, Jinyun Liu¹, Tomasz Tkaczyk¹; ¹*Rice Univ., USA.* A microendoscopic objective integrating a commercial glass lens with two-photon polymerization (2PP)-fabricated polymer optics is presented. This ultra-compact, high-NA (0.6) design enables achromatic correction at 775 nm and 860 nm for multi-wavelength nonlinear biomedical imaging.

M4C.5 • 15:15

Noninvasive Microscopy of Blood Cells in Premature Infants, Reut Friedman¹, Calri Felszer-Fisch², Ariel Koren³, Carina Levin^{3,4}, Dvir Yelin¹; ¹*Technion -Israel Inst. of Technology, Israel;* ²*Neonatal Intensive Care Unit, Emek Medical Center, Israel;* ³*Pediatric Hematology Unit, Emek Medical Center, Israel;* ⁴*The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel, Israel, Israel, Israel, Spectrally encoded flow cytometry is applied for noninvasive imaging of blood cells in premature infants. The confocal images captured by the system show comparable image quality to images obtained from an adult lip.*

Room: ICM Room 5

14:00 -- 15:30 M4A • Raman Spectroscopy I Presider: Zhiwei Huang; National Univ. of Singapore, Singapore

M4A.1 • 14:00

Autofluorescence-Raman Spectroscopy for Intra-Operative Detection of Residual Basal Cell Carcinoma: Diagnostic Accuracy and Incorrect Detections, Radu Boitor¹, Sandeep Varma², Somaia Elsheikh³, Hywel Williams⁴, Ioan Notingher¹; ¹School of Physics and Astronomy, Univ. of Nottingham, UK; ²Nottingham NHS Treatment Centre, UK; ³Department of Pathology, Nottingham Univ. Hospitals, UK; ⁴Centre of Evidence-Based Dermatology, Univ. of Nottingham, UK. Autofluorescence (AF)–Raman spectroscopy was shown to detect residual basal cell carcinoma (BCC) on the resection margin of fresh, surgically excised tissue

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

specimens. The performance of AF-Raman was compared to the reference standard of histology.

M4A.2 • 14:15

Raman Spectroscopy Studies on Imatinib- Sensitive and Resistance Chronic Myeloid Leukemia Cells, Rahul Mojidra^{1,2}, Arti Hole¹, Rukmini Govekar^{1,2}, Murali Krishna K. Chilakapati^{1,2}; ¹*TMC-ACTREC, India;* ²*HBNI, India.* Monitoring development of resistance to tyrosine-kinase-inhibitor-imatinib during treatment is crucial to avoid disease progression in chronic myeloid leukemia. Raman spectroscopy studies explored stratification of progressive imatinib resistance in K562 cell, to develop early detection tool.

M4A.3 • 14:30

Towards Real-Time Molecular Profiling of Glioblastoma via Stimulated Raman Scattering Imaging, Maximilian Brinkmann¹, Felix Neumann¹, Ramon Droop¹, Steffen Ullmann¹, Thomas Würthwein¹, Tim Hellwig¹, Silke Morris¹, Felix Stark², Isabel Schneider², Christoph Sippl²; ¹*Refined Laser Systems, Germany;* ²*Department of Neurosurgery, Univ. Hospital Bayreuth, Germany.* We present a fully integrated, clinical-compatible SRS imaging device giving access to the complete Raman spectrum for histological tissue examination during tumor surgeries.

M4A.4 • 14:45

Raman Spectroscopy of Canine Cancer to Differentiate Oral Malignancy, Arti Hole¹, Kiran Bendale¹, Poonam Gera¹, Pradip Chaudhary¹, Murali Krishna K. Chilakapati¹; ¹*TMC-ACTREC, India.* Canine models are ideal for comparative oncology research due to human similarities, hence analogs. Raman Spectroscopy (RS) explored for classifying canine oral cancers - Epulis, Spindle Cell Sarcoma, Squamous Cell Carcinoma, and Round Cell tumors.

M4A.5 • 15:00

Label-Free Classification of Breast Cancer Using Raman Spectroscopy and Machine Learning, Zhiyu Zhu¹, Ahmed Ezzat¹, Alfie Roddan¹, Yingwei Hou¹, Nilanjan Mandal¹, Jiacheng Xu¹, Ziqi Zhang¹, Mengyi Zhou¹, Ara Darzi¹, Simon Dryden¹, Daniel Leff¹, Alexander J. Thompson¹; ¹Department of Surgery and Cancer, Hamlyn Centre, UK. We applied Raman spectroscopy to an ex vivo study of breast cancer, and demonstrated accurate classification of healthy and cancerous samples using Machine Learning.

M4A.6 • 15:15

Real-Time Detection of Microplastics in Biological Fluids Using Porous SERS

Substrates, Meenakshi Meenakshi¹, Vrishty Kundu^{1,2}, Sathi Das¹, Anjika Kumari¹, Navdeep Navdeep¹, Dalip Singh Mehta¹, Kanchan Saxena²; ¹Indian Inst. of technology Delhi, India; ²Amity Inst. of Renewable and Alternative Energy, Amity Inst. of Renewable and Alternative Energy, Amity Inst. of detecting two different types of microplastics: polypropylene and polyvinylchloride in urine using a gold coated porous silicon substrate, allowing direct analysis without sample pre-treatment with a portable Raman spectrometer.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 11 16:00 -- 17:30

M5B • Innovative Applications of Diffuse Optics Presider: Jana Kainerstorfer; Carnegie Mellon Univ., USA

M5B.1 • 16:00

Physics-Based Rendering of Biological Media, Florian Foschum¹, David Hevisov¹, Markus Wagner¹, Alwin Kienle¹; ¹*Quantitative imaging & sensor technologies, Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, Germany.* Predicting the appearance of translucent biological specimens is challenging. We use the radiative transfer equation and accurately determined optical coefficients to render esthetic images, achieving near-identical results with real photographs (Δ E2000 < 1).

M5B.2 • 16:15

Real-Time Bioreactor Monitoring Using Differential Fluorescence Diffuse Optical

Tomography, Jiaming Cao¹, Jon Gorecki², Chileab Redwood-Sawyerr², Cleo Kontoravdi², Karen Polizzi², Christopher Rowlands², Hamid Dehghani¹; ¹Univ. of Birmingham, UK; ²Imperial College London, UK. Condition of engineered cells in bioreactors can be estimated in real-time using fDOT. A system and an efficient algorithm reconstructing the fluorescence changes are proposed and validated using a controlled cell culture experiment.

M5B.3 • 16:30

Influence of the Layer Structure of Leaves on the Determination of Their Scattering and Absorption Properties, Corinna Konrad¹, Markus Wagner¹, Florian Foschum¹, Alwin Kienle¹; ¹*Institut für Lasertechnologien, Germany.* An integrating sphere setup is used to determine the optical properties of plant leaves. A crosstalk between the absorption and reduced scattering coefficient is obtained and explained with the layer structure of the leaves.

M5B.4 • 16:45

Exploring the Optics of Chicken Eggs Using Time-Domain Diffuse Optics, Vamshi Damagatla¹, Lennard van den Tweel², Ilaria Bargigia¹, Freek Ariese³, Antonio Pifferi¹; ¹*Politecnico di Milano, Italy;* ²*Wageningen Univ., Netherlands;* ³*Vrije Universiteit, Netherlands.* We explore light propagation in chicken eggs using time-domain diffuse optical

spectroscopy and Monte Carlo simulations which reveal the eggshell's role as an integrating

M5B.5 • 17:00

Broadband Time-Domain Diffuse Optical Spectroscopy to Measure and Monitor

sphere, and demonstrate the ability to distinguish incubated from unincubated eggs.

Snow, Vamshi Damagatla¹, Matteo Tommasini¹, Paolo M Ossi¹, Antonio Pifferi¹; ¹*Politecnico di Milano, Italy*. We investigate light propagation in snow using broadband time-domain diffuse optical spectroscopy from 550–1100 nm on snow phantoms. We analyze absorption spectra, presence of contaminants, and scattering changes due to snow density variations.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

M5B.6 • 17:15

Non -Invasive Monitoring of Lipid Dynamics in Seals: Preliminary in-Vivo Spectroscopic Experiments, Aparajita Naik¹, J. C. McKnight², Joanna Kershaw², Deepshikha Acharya¹, Gemma Bale¹; ¹Univ. of Cambridge, UK; ²Sea Mammal Research Unit (SMRU), Univ. of St. Andrews, UK. This research explores short wave infrared red (SWIR) spectroscopy for non-invasive monitoring of lipid dynamics in seals. Preliminary in-vivo studies analyzed dietary lipid changes in blood.

Room: ICM Room 22b 16:00 -- 17:30 M5C • Multiphoton Microscopy II Presider: Marie-Claire Schanne-Klein: LOB - Ecole Polytechnique, CNRS, Inserm, France

M5C.1 • 16:00

Broadband Background-Free Stimulated Raman Scattering Microspectroscopy Utilizing a Novel Frequency Modulation Scheme, Luca Genchi¹, Sergey P. Laptenok¹, Carlo Liberale¹; ¹*King Abdullah Univ of Sci & Technology, Saudi Arabia.* We present a novel broadband frequency-modulation stimulated Raman scattering architecture using femtosecond and picosecond lasers, and two narrowband filters, including a fast acousto-optic tunable filter, enabling simplified and flexible wavenumber selection for background-free Raman microspectroscopy.

M5C.2 • 16:15

Tunable Wide-Field Broadband Video-Rate CARS Microscope in the Fingerprint

Region, Chiara Ceconello¹, Andrea Rabolini¹, Federico Vernuccio¹, Salvatore Sorrentino¹, Arianna Bresci¹, Francesco Manetti¹, Renzo Vanna², Giulio Cerullo^{1,2}, Dario Polli^{1,2}; ¹Politecnico *di Milano, Italy;* ²Istituto *di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy.* We present a wide-field CARS microscope enabling label-free vibrational imaging over large fields of view at video rate, capturing fast biological dynamics in real time with broadband signal generation for chemically specific contrast.

M5C.3 • 16:30

Label Free 775nm SLIDE Autofluorescence Images of NADH and FAD, Tonio F. Kutscher¹, Christan Stock¹, Stefan Meyer^{1,2}, Jonas Jurkevicius¹, Moritz Wiggert³, Florian Sommer^{1,4}, Stefanie Köhler¹, Philipp Lamminger¹, Sebastian Karpf¹; ¹Univ. of Lübeck, Germany; ²Medizinisches Laserzentrum Lübeck, Germany; ³Université de Geneva, Switzerland; ⁴Leibniz Inst. of Virology, Germany. We present label-free autofluorescence images of NADH and FAD using a spectro-temporal laser imaging by diffractive excitation (SLIDE) microscope. The kHz image acquisition speeds of SLIDE combined with autofluorescence enable rapid and label-free imaging flow cytometry.

M5C.4 • 16:45

Non-Linear Microscopy as a Novel Tool for Cellular Senescence Diagnosis, Meropi Mari¹, Eleni Kanakousaki^{2,1}, Anthi Ranella¹, George Filippidis¹, Costas Fotakis^{3,1}; ¹*IESL / FORTH, Greece;* ²*Biology, Univ. of Crete, Greece;* ³*Physics, Univ. of Crete, Greece.* The non-linear modality of Third Harmonic Generation (THG) can discriminate between senescent and nonsenescent fibroblasts by detecting a distinct lipid content increase of senescent cells,

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

offering a noninvasive approach towards the characterization of cellular senescence.

M5C.5 • 17:00

Virtual Histology of Brain Aspirate Using Kilohertz Two-Photon SLIDE

Microscopy, Gregory Berg¹, Matthea Thielking¹, Sebastian Karpf¹; ¹*Inst. of Biomedical Optics* (*BMO*), *Universität zu Lübeck, Germany.* This study presents a virtual H&E staining method for brain tumour aspirate using SYTO82 and Nile Red dyes. The acquisition with SLIDE microscopy offers potential for fast intraoperative histological evaluation via imaging flow histology.

M5C.6 • 17:15

Non-Destructive, Label Free Chemical Characterization of Mycobacterium *Tuberculosis (MTB)* Biofilms via QCL-Based Mid-IR Reflection Microspectroscopy, Bei Shi Lee², Matthias Godejohann³, Mengyang Liu¹, Rainer A. Leitgeb¹, Wolfgang Drexler¹, Michael Berney^{2,4}, Richard Haindl¹; ¹Center for Medical Physics and Biomedical Engineering, Medical Univ. of Vienna, Austria; ²Epidemiology, Biostatistics and Prevention Inst., Univ. of Zurich, Switzerland; ³MG Optical Solutions GmbH, Germany; ⁴Albert Einstein College of Medicine, USA. We applied label-free QCL-based mid-IR reflection microspectroscopy to analyze heterogeneous MTB biofilms. Hyperspectral imaging with RGB thresholding identified extracellular matrix microdomains with distinct protein, carbohydrate, lipid, and phosphate distributions.

Room: ICM Room 5

16:00 -- 17:30

M5A • Detection of Endogenous and Exogenous Chromophores *Presider: Alexander Bykov; Univ. of Oulu, Finland*

M5A.1 • 16:00

Exploiting Spectral Signatures for Retinal Health Assessment: A Phasor Analysis Approach, Armin Eskandarinasab¹, Laura Rey-Barroso¹, Francisco J. Burgos-Fernández¹, Meritxell Vilaseca¹; ¹Center for Sensors, Instruments and Systems Development, Universitat Politècnica de Catalunya, Spain. This study applies phasor analysis to multispectral retinal images for automated classification of healthy and diseased cases, achieving high accuracy with a v-SVM classifier and first harmonic for the entire retina and macular region.

M5A.2 • 16:15

Spectral Online Monitoring (SOM) in Inhomogeneous Tissue-Mimicking Optical Phantoms, Julian Schmidt¹, Maximilian Aumiller¹, Krishna Subedi¹, Ronald Sroka¹, Adrian Rühm¹; ¹*Klinikum der Universität München, Germany.* Spectral online monitoring (SOM) performed during interstitial photodynamic therapy (iPDT) has so far been analyzed for homogeneous optical properties. A method is presented to extend SOM analysis to inhomogeneous tissue.

M5A.3 • 16:30

Mechanisms for Optoacoustic Stimulation of the Tympanic Membran, Christin Grill¹, Florian Denk³, Hendrik Husstedt³, Ralf Brinkmann^{1,2}; ¹*Medical Laser Center Lübeck, Germany;* ²*Univ. of Lübeck, Inst. of Biomedical Optics, Germany;* ³*German Inst. of Hearing Aids, Germany.* Towards an alternative hearing aid, pulsed laser induced stimulation of eardrum models was investigated by synchronous measurements of membrane displacement and sound

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

pressure. Thermoelastic membrane bending was found to be most effective.

M5A.4 • 16:45

Validation of Intraoperative Functional Brain Mapping Based on Color Imaging with Direct Electrical Brain Stimulation, Charly Caredda¹, Thiébaud Picart², Jacques Guyotat^{2,1}, Bruno Montcel¹; ¹*Creatis, France;* ²*Cranial Neurosurgical Department, Hospices Civils de Lyon, France.* In this study, we evaluated the sensitivity and specificity of intraoperative color imaging to identify brain functions during neurosurgery on 12 patients. The identifications were compared to electrical brain stimulation and showed a good correspondence.

M5A.5 • 17:00

Complex Refractive Index Evaluation in the NIR Spectral Range, David Abookasis¹; ¹*Ariel Univ., Israel.* An integrated approach based on Kramers-Kronig relations, diffusion approximation, Fresnel equations and dispersion models have been used to evaluate complex refractive index. Approach was tested on different turbid media including human and mouse models.

M5A.6 • 17:15

Influence of Sensitivity Metrics Definition on Fluorescence Molecular Endoscopy (FME) Systems Performance Assessment and Quality Control, Anna Tenditnaya^{1,2}, Elena Kriukova^{1,2}, Ruben Gabriëls³, Wouter Nagengast³, Vasilis Ntziachristos^{1,2}, Dimitris Gorpas^{1,2}; ¹Inst. of Biological and Medical Imaging, Helmholtz Zentrum München, Germany; ²Chair of Biological Imaging, Central Inst. for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical Univ. of Munich, Germany; ³Department of Gastroenterology and Hepatology, Univ. Medical Center Groningen, Univ. of Groningen, Netherlands. To boost translation of fluorescence molecular endoscopy (FME), we developed a standardization methodology employing composite phantoms to assess FME systems performance. Additionally, we showed a need for the precise definition of contract and signal-to-noise ratio.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tuesday, 24 June

Room: ICM Room 11 10:30 -- 12:00 Tu1B • Advances in Instrumentation and Technology II Presider: Adam Liebert; Inst Biocybernet i Inżynierii Biomed PAN, Poland

Tu1B.1 • 10:30

Time-Resolved Diffuse Optical System with Spectral Parallelization Over a 16-Channel SiPM Array, Giulia Maffeis¹, Elisabetta Avanzi¹, Nicola Serra¹, Alessandro Bossi¹, Valerio Gandolfi¹, Xinqiu Ye¹, Andrea Farina², Cosimo D'Andrea¹, Laura Di Sieno¹, Paola Taroni¹, Antonio Pifferi¹, Alberto Dalla Mora¹; ¹Politecnico di Milano, Italy; ²Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy. The compact (32×45 mm²) SiPM-based multi-channel system enables parallelized spectral acquisition (700–950 nm, $\Delta\lambda$ = 16 nm), demonstrating reliable performance on phantoms and effective tissue characterization *in vivo* during scans on back and calf.

Tu1B.2 • 10:45

A Hybrid Time-of-Flight-Resolved Parallel Interferometric Near-Infrared Spectroscopy (Parallel INIRS) With a Fast Two-Dimensional and a Single-Channel INIRS, Marcin J. Marzejon¹, Klaudia Nowacka-Pieszak^{1,2}, Michal Dabrowski^{1,2}, Dawid Borycki^{1,2}; ¹Inst. of Physical Chemistry PAS, Poland; ²International Centre for Translational Eye Research, Poland. Continuous-wave parallel interferometric near-infrared spectroscopy (CW-πNIRS) monitors cerebral blood flow noninvasively but lacks time-of-flight resolution. Time-of-flightresolved parallel iNIRS enhances CW-πNIRS by improving spatial resolution and enabling shorter source-collector separations.

Tu1B.3 • 11:00

Custom SNSPD for Hybrid Time-Domain Diffuse Optics, Martin Caldarola¹, Amin Fakhree¹, Tommaso Palo³, Vamshi Vamshi Damagatla³, Laura Di Sieno³, Antonio Pifferi³, Alberto Dalla Mora³, Lisa Kobayashi Frisk², Turgut Durduran^{2,4}; ¹*Single Quantum B.V., Netherlands;* ²*ICFO, Spain;* ³*Politecnico Milano, Italy;* ⁴*ICREA, Sri Lanka.* We present a superconducting nanowire single-photon detector (SNSPD) system designed for diffuse optics applications. We describe the specifications of the detectors and we show results from time-domain diffuse correlation spectroscopy and near infrared spectroscopy

Tu1B.4 • 11:15

Time-Domain Diffuse Optical Tomography with Pattern Illumination and Detection: Experimental System, Giovanna T. Carneiro^{1,2}, Jarjish Rahaman³, Meghdoot Mozumder³, Tanja Tarvainen³, Andrea Farina^{2,1}; ¹*Politecnico di Milano, Italy;* ²*Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy;* ³*Univ. of Eastern Finland, Finland.* We present a experimental setup for time-resolved Diffuse Optical Tomography (DOT) combining structured light illumination and single-pixel camera detection using Hadamard patterns and multiple-view approach. Measurements are performed on a solid phantom with absorbing inclusions.

Tu1B.5 • 11:30

Broadband non-Contact Spectroscopy Using Time-Domain Diffuse Optics, Vamshi Damagatla¹, Laura Di Sieno¹, Andrea Farina¹, Alberto Dalla Mora¹, Antonio Pifferi¹; ¹Politecnico *di Milano, Italy.* We perform non-contact broadband spectroscopy at a height of 7cm using time-

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

domain diffuse optical techniques by utilizing a superconducting nanowire detector. We measure phantoms of water and lipids and also performed a preliminary in-vivo study.

Tu1B.6 • 11:45

Robustness of Time-Domain Near-Infrared Spectroscopy Against Skin Pigmentation Differences, Fabio Negretti¹, Caterina Amendola¹, Ilaria Bargigia^{1,2}, Alessandro Bossi¹, Mauro Buttafava³, Valeria Calcaterra^{4,5}, Davide Contini¹, Vamshi Damagatla¹, Michele Lacerenza³, Virginia Rossi⁴, Lorenzo Spinelli⁶, Sara Zanelli⁴, Gianvincenzo Zuccotti^{4,7}, Alessandro Torricelli^{1,6}; ¹Dipartimento di Fisica, Politecnico di Milano, Italy; ²Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Italy; ³PIONIRS S.r.l., Italy; ⁴Pediatric Department, Buzzi Children's Hospital, Italy; ⁵Pediatric and Adolescent Unit, Univ. of Pavia, Italy; ⁶Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Italy; ⁷Department of Biomedical and Clinical Science, Univ. of Milan, Italy. We systematically demonstrate skin pigmentation negligibly affects TD-NIRS results (optical properties, hemodynamic parameters) through in-vivo (static, dynamic, campaign on pediatric cohort) and phantom measurements, proving its robustness in retrieving tissue saturation in clinical settings.

Room: ICM Room 22b

10:30 -- 12:00 Tu1C • Multiphoton Microscopy III

Presider: Carlo Liberale; King Abdullah Univ of Sci & Technology, Saudi Arabia

Tu1C.1 • 10:30 (Invited)

Polarization-Resolved SHG Imaging of the Lamellar Structure of the Human Cornea Over its Full Thickness., Poncia Nyembo Kasongo¹, Clothilde Raoux¹, Pierre Mahou¹, Anatole Chessel¹, Gaël Latour^{1,2}, Marie-Claire Schanne-Klein¹; ¹LOB - Ecole Polytechnique, CNRS, Inserm, France; ²Université Paris-Saclay, France. We have used epi-detected polarization-resolved SHG microscopy to map the orientation of collagen lamellae in whole human corneas. We have also measured the refractive index of these corneas to implement a refractive index matched configuration.

Tu1C.2 • 11:00

Polarization-SHG Analysis of Regenerative Tissue in Porcine Knee Cartilage Defects Treated With Stem Cells, Van-Tung Nguyen¹, Anupama Nair², Shu-Chun Chuang^{3,4}, Yi-Shan Lin^{3,4}, Chung-Hwan Chen^{3,4}, Chi-Hsiang Lien⁵, Shean-Jen Chen¹; ¹College of Photonics, National Yang Ming Chiao Tung Univ., Taiwan; ²Department of Biomedical Engineering, Univ. of Wisconsin-Madison, USA; ³Orthopaedic Research Center, Kaohsiung Medical Univ., Taiwan; ⁴Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical Univ., Taiwan; ⁵Department of Mechanical Engineering, National United Univ., Taiwan. This study presents a dual-liquid crystal-based polarization-resolved second harmonic generation microscopy technique for analyzing cartilage repair. By assessing peptide pitch angle, anisotropy, and circular dichroism, it distinguishes collagen types (I/II) and monitors regeneration in a porcine knee defect model.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu1C.3 • 11:15

Modelling and Predicting Second Harmonic Generation from Protein Molecular

Structure, Bahar Asadipour¹, Emmanuel Beaurepaire¹, Xingjian Zhang¹, Anatole Chessel¹, Pierre Mahou¹, Willy Supatto¹, Marie-Claire Schanne-Klein¹, Chiara Stringari¹; ¹*Iaboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, France.* Here we present a general multiscale numerical framework relating the micrometer-scale SHG measurements at the optical wavelength to the atomic-scale and molecular structure of the proteins under study and their supramolecular arrangement.

Tu1C.4 • 11:30

Label Free Third Harmonic Generation Microscopy for the Understanding of Peripheral Demyelination in Neurodegeneration, Milvia I. Alata Tejedo¹, Robert Ciarán Prior^{2,3}, Candice Fung¹, Ludo Van Den Bosch^{2,3}, Zhiqing Zhang⁴, Pieter Vanden Berghe¹; ¹*Translational Research Center for Gastrointestinal Disorders, Katholieke Universiteit Leuven, Belgium;* ²Department of Neurosciences, Experimental Neurology, Leuven Brain Inst., Katholieke Universiteit Leuven, Belgium; ³Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Belgium; ⁴Inst. of Modern Optics, Nankai Univ., China. THG imaging of the sciatic nerve in ALS and CMT models of neurodegeneration enabled us to distinguish demyelination patterns associated specifically to each disease. Myelin associated anomalies were observed intravitally and in fresh dissected tissue.

Tu1C.5 • 11:45

Quantitation of Collagen Remodeling in Murine Cervix During Gestation Using

Polarization-Resolved SHG Microscopy, Jessica C. Ramella-Roman³, Vaky Abdelsayed¹, JunZhu Pei³, Mala Mahendroo⁴, Clothilde Raoux¹, Gaël Latour^{1,2}, Marie-Claire Schanne-Klein¹; ¹LOB - Ecole Polytechnique, CNRS, Inserm, France; ²Université Paris-Saclay, France; ³Department of Biomedical Engineering, Florida International Univ., USA; ⁴Department of Obstetrics and Gynecology, Univ. of Texas Southwestern Medical Center, USA. Polarization-resolved SHG imaging of the mouse cervix provides orientation maps of collagen remodeling during pregnancy at the submicrometer scale. Order metrics computed in small bins show a significant difference between early and late pregnancy.

Room: ICM Room 5

10:30 -- 12:00

Tu1A • Multispectra Techniques Across Biophotonics

Presider: Zhiwei Huang; National Univ. of Singapore, Singapore and Lothar Lilge; Univ. Health Network, Canada

Tu1A.1 • 10:30

Transforming Hematoxylin and Eosin Histopathology with Two-Color Two-Photon

Absorption and Fluorescence Imaging, Zongshuai Hai¹, Soumit Saha¹, Xiang Fang¹, Fake F. Lu¹; ¹*Binghamton Univ., USA.* We present a two-color two-photon absorption and fluorescence imaging method for volumetric hematoxylin and eosin (H&E) histopathology, achieving high-resolution, artifact-free imaging of thick tissue sections, which improves histopathological assessment for clinical diagnosis.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu1A.2 • 10:45

Enhancing Phosphene Spatial Resolution with TACS Pulse Width Modulation: A Novel Non-Invasive Electrical Stimulation Protocol, Veronica Kurkjian¹, Faraz Sadrzadeh-Afsharazar¹, Alexandre Douplik^{1,2}; ¹Toronto Metropolitan Univ., Canada; ²iBest, Keenan Research Centre of the Li Ka Shing Knowledge Inst., St. Michael's Hospital, Canada. Visual impairment affects 285 million worldwide. This study aims to develop a novel non-invasive electrical stimulation protocol using tACS pulse width modulation to control phosphene stimulation, making non-invasive visual prostheses more comparable to invasive devices.

Tu1A.3 • 11:00

Optical Hyperthermia Mediated by Gold Nanoprisms to Boost Hydra Regeneration: Insights into Calcium Dynamics, Natalia Dell'Aversano¹, Giorgia Tortora², Emma Martinelli², Alessia Candeo², Maria Moros³, Andrea Bassi², Angela Tino¹, Claudia Tortiglione¹, Valentina Marchesano¹; ¹CNR-ISASI, Italy; ²Dipartimento di Fisica, Politecnico di Milano, Italy; ³Instituto de Nanociencia y Materiales de Aragón (INMA), Spain. This study explores the usage of gold nanoprisms (AuNPs) as intracellular nanoheaters to enhance *Hydra* regeneration via NIR irradiation. It investigates local and global effects of heat on cellular processes, employing advanced imaging techniques to track calcium fluxes.

Tu1A.4 • 11:15

Increasing the Use of FT-IR Spectroscopy as Diagnostic Screening in Clinical Practice, Luis Felipe Carvalho¹; ¹UNITAU - Univ. of Taubaté, Brazil. FT-IR spectroscopy provides rapid, non-invasive biochemical analysis for diagnostics. This study examines its potential for early disease detection and improved patient management, demonstrating feasibility as a screening tool.

Tu1A.5 • 11:30

A Linear Discriminant Analysis for Interleukin-1beta Effects on the Vibrational

Spectroscopy of Heart Tissue, Raffaele Stasi¹, Oscar Moreno-Loiza², Daniela d. Silva¹, Vinicius P. Anjos¹, Evelin Monteiro², Emiliano H. Medei², Denise M. Zezell¹; ¹Center for Lasers and Applications, Nuclear and Energy Research Inst., Brazil; ²Inst. of Biophysics Carlos Chagas Filho, Federal Univ. of Rio de Janeiro, Brazil. Fourier-transform infrared (FTIR) spectroscopy imaging was used to analyze cardiac atria from IL-1β-treated mice. Linear discriminant analysis identified spectral differences, notably in the 1500--1800 cm⁻¹ region, suggesting IL-1β alters protein and lipid composition in heart tissue.

Tu1A.6 • 11:45

Optical Properties Corrected Fluorescence Spectroscopy for Liver Graft Viability

Monitoring, Antoine Uzel¹, Michaël Sdika¹, Guillaume Rossignol^{2,3}, Xavier Muller², Natacha Boulanger², Olivier Lopez^{5,6}, Arthur Gautheron^{1,4}, Bruno Montcel¹; ¹CREATIS, France; ²Department of General Surgery and Liver Transplantation, Croix-Rousse Univ. Hospital, Hospices Civils de Lyon, France; ³Department of Pediatric Surgery and Liver Transplantation, Femme Mere Enfant Univ. Hospital, Hospices Civils de Lyon, France; ⁴CPE Lyon, France; ⁵Aix Marseille Univ, LIIE, France; ⁶Aix Marseille Univ, CERIMED, France. We present a novel method combining fluorescence spectroscopy and diffuse reflectance measurements for liver graft viability assessment. Our approach corrects for tissue optical properties, enabling accurate fluorophore quantification. The method was validated on tissue-mimicking phantoms and porcine ischemia-reperfusion models.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Hall B0 12:00 -- 14:00 Tu2A • Joint Posters Session II

Tu2A.1

Background Noise and PSF Characterization for High Reflecting Sample in PS-SS-OCT Using the Movement of Mirror on Reference Arm, Nuerbahati Ayiben¹, Rene Siegmund¹, Alexander Egner¹; ¹Institut für Nanophotonik Göttingen e.V., Germany. We present an approach for separating system-induced noise from sample reflections in PS-SS-OCT, improving signal clarity and enabling robust background characterization in systems without balanced detection.

Tu2A.2

Monitoring MC38 Murine Tumor Progression and Treatment Outcomes Using Hyperspectral Imaging, Tadej Tomanic¹, Crt Keber¹, Tim Bozic^{2,3}, Bostjan Markelc^{2,4}, Simona Kranjc Brezar^{2,5}, Gregor Sersa^{2,6}, Matija Milanic^{1,7}; ¹UL, Faculty of Mathematics and Physics, Slovenia; ²Inst. of Oncology Ljubljana, Slovenia; ³Univ. of Ljubljana (UL), Slovenia; ⁴UL, Biotechnical Faculty, Slovenia; ⁵UL, Faculty of Medicine, Slovenia; ⁶UL, Faculty of Health Sciences, Slovenia; ⁷Jozef Stefan Inst., Slovenia. This study highlights hyperspectral imaging for monitoring MC38 murine tumor progression and response to radiotherapy and electrochemotherapy. Results demonstrate the potential for non-invasive tumor assessment, providing valuable insights into tumor dynamics and therapeutic efficacy.

Tu2A.3

Multispectral Processing ot the Images of Cutaneous Neoplasms in Experimental Animals, Boris S. Gurevich¹, Kirill V. Zaichenko¹, Vladimirov L. Fyodor¹, Darya A. Gribova¹, Anastasia A. Aliferko¹; ¹*Inst. for Analytical Instrumentation, Russian Federation.* The experimental setup and the results of a series of experiments on multispectral processing of skin neoplasms in experimental animals (rats) are described. These experiments aim to provide diagnosis of skin cancer at early stages of its development.

Tu2A.4

Enhancing Characterization of Chemical and Morphological Changes in Tissue With a Hybrid Raman and Partial Wave Spectroscopy System, Sabir UI Alam^{1,2}, Elena Kriukova^{1,2}, Mikhail Mazurenka^{1,2}, Sabrina Marcazzan^{1,2}, Sarah Glasl^{1,2}, Michael Quante³, Markus Tschurtschenthaler⁴, Gerwin J. Puppels⁵, Vasilis Ntziachristos^{1,2}, Dimitris Gorpas^{1,2}; ¹Helmholtz Zentrum München (GmbH), Germany; ²Technical Univ. of Munich, Germany; ³Klinik für Innere Medizin II, Germany; ⁴German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Germany; ⁵RiverD International B.V, Netherlands. We demonstrate a hybrid system combining Raman spectroscopy and partial wave spectroscopy, improving tissue classification accuracy and detecting variation in tissues from an intestinal tumorigenesis mouse model, showcasing the system's potential for field cancerization studies.

Tu2A.5

Optimized Reconstruction Framework in Fluorescence Diffuse Optical Tomography Using Radiative Transfer Equation, Pascal Nguyen^{1,2}, Martin Rodriguez-Vega¹, Julien Wojak¹, Paul Dorval², Rémi André¹, Maxime Henry³, Véronique Josserand³, Xavier Le Guével³, Anabela Da Silva¹; ¹Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, Marseille, France, France; ²Kaer Labs, Nantes, France, France; ³Inst. for Advanced Biosciences, Univ. Grenoble Alpes, INSERM U1209,CNRS UMR 5309, 38000 Grenoble, France, France. We present a

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

fluorescence diffuse optical tomography reconstruction framework based on the radiative transfer equation. Validated against the diffusion approximation framework, it proves to be a viable alternative for second near-infrared window tomography reconstruction.

Tu2A.6

Simulation Study on Spatial Distribution of Diffuse Reflectance Detected Near the Slit Illuminated Area in Skin, Tomonori Yuasa¹, Rei Nishimura¹, Iori Kojima¹, Kumiko Kikuchi², Naomichi Yokoi³, Yoshihisa Aizu¹; ¹Muroran Inst. of Tech., Japan; ²Shiseido Co. Ltd., Japan; ³Chitose Inst. of Sci. and Tech., Japan. Spatial distribution of diffuse reflectance detected near the slit illuminated area was investigated by Monte Carlo simulation in the ninelayered skin model. Results may provide possibility of detecting changes in scattering in dermis.

Tu2A.7

Investigation on Differentiation of Skin Spectral Reflectance for Simple Estimation of Change in Oxygen Saturation, Naomichi Yokoi², Iori Kojima¹, Tomonori Yuasa¹, Yoshihisa Aizu¹; ¹*Muroran Inst. of Technology, Japan;* ²*Chitose Inst. of Science and Technology, Japan.* We investigate a relation of oxygen saturation versus a differential skin spectral reflectance by Monte Carlo simulation and multiple regression analysis, and show a possibility for simply estimating the oxygen saturation in skin tissue.

Tu2A.8

Cloud-Based Automated System for NIRS Data Processing, Darshana Gopal¹, Musa Talati¹, Uzair Hakim¹, Luca Giannoni¹, Ilias Tachtsidis¹, Subhabrata Mitra², Olayinka Kowobari², Olivia Newth³, Hakim-Moulay Dehbi⁴, Neha Varun⁵, Dimitrios Siassakos⁶, Sara Hillman⁶, Niccole Ranaei-Zamani²; ¹Department of Medical Physics and Biomedical Engineering, Univ. College London, UK; ²Neonatology, EGA Inst. for Women's Health, Univ. College London, UK; ³Obstetrics Unit, Univ. College London Hospital, UK; ⁴Comprehensive Clinical Trials Unit, Univ. College London, UK; ⁵All India Inst. of Medical Sciences, India; ⁶Maternal and Fetal Medicine, Elizabeth Garrett Anderson Inst. for Women's Health, Univ. College London, UK. This paper presents a cloud-based system for automated NIRS data processing, featuring an interactive dashboard for visualization, quality assessment, and cleaning, alongside an AWS Lambda-powered pipeline for automated processing and storage.

Tu2A.9

Optimal Wavelength Selection for Laparoscopic Multispectral Imaging to Visualize Tissue Oxygenation, Annekatrin Pfahl¹, Hannes Köhler¹, Andreas Melzer^{1,2}; ¹Universitat Leipzig, Germany; ²Univ. of Dundee, UK. Selecting spectral bands for medical multispectral imaging is challenging. Simulations, regression models, and a-priori knowledge defined various combinations of light-emitting diodes for laparoscopic illumination to measure tissue oxygenation. The best one led to an RMSE of 0.04. Current results must be confirmed in patient studies.

Tu2A.10

Fluorescence Imaging of Fast Moving Samples, Ondrej Mandula¹; ¹*CEA-LETI, France*. A method for SNR improvement of fluorescence signal in fast moving samples such as swimming sperm cells. Fluorescence is progressively accumulated along the tracks established from a transmission channel recorded simultaneously.

Tu2A.11

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

NIR and SWIR Continuous Wave Diffuse Optical Tomography from a Wearable Device Setup, Julien Wojak¹, Sydur Rahman¹, Laurent Alacoque², Jean-Michel Tualle³, Dominique Ettori³, Xavier Alacoque⁴, Anabela Da Silva¹; ¹*Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, France;* ²DOPT Department, Univ. Grenoble Alpes, CEA Leti, France; ³LPL, UMR 7538, Université Sorbonne Paris-Nord, France; ⁴Anesthesia, intensive care Oncopole Claudius *Regaud, France.* This paper presents absorption reconstruction by diffuse optical tomography from two infrared wavelength measurements using a reflection configuration proposed on a wearable device dedicated to diffuse imaging of biological tissues.

Tu2A.12

Tracking Microbial Activity Using Laser Speckle Analysis, Ilze Lihacova¹, Valts Liepins³, Eduards T. Mincis², Emilija V. Plorina¹, Edgars Kviesis-Kipge¹, Alexey Lihachev¹, Janis Liepins²; ¹Inst. of Atomic Physics and Spectroscopy, Univ. of Latvia, Latvia; ²Inst. of Microbiology and Biotechnology, Univ. of Latvia, Latvia; ³Inst. of Numerical Modelling, Univ. of Latvia, Latvia, Latvia. The laser speckle imaging system developed in this study monitored *Pleurotus ostreatus* growth in real-time. This non-invasive method reliably mapped microbial activity with low data volume and fast processing, accelerating microbiological experiments and enhancing high-throughput screening applications.

Tu2A.13

Combining Scalp Coupling Index with Coefficient of Variation to Determine FNIRS Signal Quality in 3D Printed Optode Holders, Pichaya Tappayuthpijarn¹, Urban Marhl², Piotr Saowsz³, Paul Anders¹, Vojko Jazbinšek², Adam Liebert³, Tilmann Sander¹, Stanislaw Wojtkiewicz³; ¹Physikalisch-Technische Bundesanstalt (PTB), Germany; ²Inst. of Mathematics, Physics and Mechanics, Slovenia; ³Nalecz Inst. of Biocybernetics and Biomedical Engineering, Poland. 3D-printed fNIRS optode holders ensure precise array geometry relative to brain anatomy. We evaluate signal quality using the scalp coupling index and coefficient of variation.

Tu2A.14

A Liquid Phantom for Validating Hyperspectral Imaging in Brain Tumour

Resection, Angelos Artemiou¹, Fréderic Lange¹, Charly Caredda², Luca Giannoni¹, Bruno Montcel², Ilias Tachtsidis¹; ¹Univ. College London, UK; ²CREATIS, France. This paper presents a liquid phantom for simulating gliomas in brain tissue. Constructed from PMMA using laser-cut channels guided by segmented surgical images, it simulates vasculature and tumours with blood, Intralipid.

Tu2A.15

Asymmetric Self-Calibrating Method for Accurate Cerebral Oximetry, Leila Motamed Jahromi¹, Lin Yang^{2,1}, Alexander von Lühmann², Dirk Grosenick¹; ¹*Physikalisch-Technische Bundesanstalt, Germany;* ²*NIRx Medizintechnik GmbH, Germany.* We developed a novel asymmetric model to apply the self-calibrating method to non-symmetric source-detector configurations being in use for high-density brain imaging. The approach was successfully validated on tissue-mimicking phantoms using a fNIRS brain imager.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu2A.16

Full Vibrational Spectroscopy for Simultaneous Mechanical, Structural and Chemical Analysis, Morteza Behrouzitabar^{1,2}, Karlis Berzins³, Cristian Manzoni⁴, Dario Polli^{5,4}, Giulio Cerullo^{5,4}, Renzo Vanna⁴, Giuseppe Antonacci²; ¹Univ. of Milano-Bicocca, Italy; ²Specto Photonics, Italy; ³Univ. of Copenhagen, Denmark; ⁴CNR-Istituto di Fotonica e Nanotecnologie (CNR-IFN), Italy; ⁵Politecnico di Milano, Italy. The spectrum of the light scattered by acoustic and molecular vibrations offers unique mechanical, structural, and chemical information of matter. We introduce a method to measure the entire vibrational spectrum to analyze pharmaceuticals.

Tu2A.17

Quantifying Raman Photon Generation Depth via Diffusion Modeling, Alessandro Bossi¹, Valerio Gandolfi¹, Andrea Farina¹, Ilaria Bargigia¹, Antonio Pifferi¹, Fabrizio Martelli²; ¹*Politecnico di Milano, Italy;* ²*Dipartimento di Fisica e Astronomia, Università Degli Studi Di Firenze, Italy.* In this work, we propose a model derived from diffusion theory of the generation depth of Raman photon with respect to the time of arrival.

Tu2A.18

Glucose Measurement in a Turbid Medium Using DRS Technique at 940nm, Luc Andre¹, Martin Lejosne¹, Jean Hue¹, Michael Pelissier¹, Florence Rigal¹, Guillaume Blanquer¹, Giacomo Badano¹; ¹CEA-LETI, France. We propose a spectroscopic system using a 940nm LED to measure glucose concentration in a turbid medium. We reach a resolution of 0.5g/L, a penetration depth of 600µm for an input power as low as 15µW.

Tu2A.19

Determining the Optical Properties of Scattering Media Using a Cluster of Advanced Devices, Alwin Kienle¹, Levin Stolz¹, Markus Wagner¹, Johannes Mäder¹, Joachim Jelken¹, David Hevisov¹, Peter Naglic¹, Florian Foschum¹; ¹Institut for Laser Technologies in Medicine and Metrology at the Univ. of Ulm, Germany. A cluster of advanced devices for determining the optical properties of scattering media has been developed and validated through phantom measurements, laying the foundation for a research center to be established at ILM in 2025.

Tu2A.20

Monte Carlo Simulation of Spectral Reflectance Images of Human Skin with Embedded Lesions, Uldis Rubins¹, Ilze Irbe¹, Janis Spigulis¹; ¹Univ. of Latvia, Latvia. This study applies Monte Carlo simulation to model the spectral images of skin lesions in the visible and nearinfrared ranges. By simulating the spatial distribution of backscattered light, we analyze the correlation between its optical properties and spectral features.

Tu2A.21

Development of a Parallel, Multi-Wavelength, Multi-Channel, Multi-Distance, Time-Resolved Near Infrared Spectrometer, Scott Pesenti¹, Alessandro Torricelli^{2,1}, Lorenzo Spinelli¹; ¹*Istituto di Fotonica e Nanotecnologie, CNR, Italy;* ²*Dipartimento di Fisica, Politecnico di Milano, Italy.* In this work we present a time-domain near-infrared spectroscopy system using a supercontinuum laser for parallel acquisition of seven wavelengths at two inter-fiber distances.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu2A.22

Assessment of Muscle Optical Properties by Double Distance TD NIRS Measurements: a Simulation and in-Vivo Study, Rebecca Re^{1,2}, Alessandro Scano³, Oriana Amata⁴, Antonello Valerio Caserta⁴, Marco Nabacino¹, Davide Contini¹, Rinaldo Cubeddu¹, Antonio Frizziero⁴, Alessandro Torricelli^{1,2}, Lorenzo Spinelli²; ¹Dipartimento di Fisica, Politecnico di Milano, Italy; ²Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ³Inst. of Intelligent Industrial Systems and Technologies for Advanced Manufacturing, Consiglio Nazionale delle Ricerche, Italy; ⁴Department of Rehabilitation, Azienda Socio Sanitaria Territoriale Gaetano Pini-Centro Specialistico Ortopedico Traumatologico, Italy. In this work we propose a method based on two source-detector distances and a two-layer geometry for TD NIRS analysis specific for application on muscle. The method was verified with numerical simulations and in-vivo examples.

Tu2A.23

Optimising Placenta Oxygenation Estimation: A Monte Carlo Simulation Study, Uzair Hakim¹, Charly Caredda², Frederic Lange¹, Darshana Gopal¹, Musa Talati¹, Luca Giannoni¹, Subhabrata Mitra¹, Ilias Tachtsidis¹; ¹UCL, UK; ²INSA Lyon, France. We compare the Dual-Slope and Spatially Resolved Spectroscopy methods to resolve StO₂ from the placenta layer of a simulated volume. Findings suggest SRS can more accurately resolve placental oxygen saturation, in contrast with previous findings.

Tu2A.24

Analytical Sensitivity Factor Equations for Attenuation and Moments in Near-Infrared Spectroscopy, Aleh Sudakou¹, Stanislaw Wojtkiewicz¹, Roman Maniewski¹, Adam Liebert¹; ¹*IBIB PAN, Poland.* We derived analytical sensitivity factor equations for attenuation and moments in NIRS that allow recovering any magnitude changes in absorption or scattering, provided the diffusion approximation remains valid.

Tu2A.25

Advancing Neuroscience Diagnostics: A Hyperspectral Imaging System for Real-Time Biochemical Insights Into Brain Tissue, Anam Toaha³, Pietro Ricci³, Louis Chessel¹, Dorotea Nardini³, Luca Giannoni², Ilias Tachtsidis², Francesco S. Pavone³; ¹Biomedical Engineering, Polytech Lyon, France; ²UCL, UK; ³Univ. of Florence, Italy. Here we present a hyperspectral imaging system designed for advancing the detection and diagnosis of brain tumors. We provide a comprehensive characterization of the system, which guarantees rapid spectral scanning, tunable wavelength selection, large field of view, high signal-to-noise ratio and spatiotemporal resolution.

Tu2A.26

Sparse-View Cherenkov Imaging Reconstruction Algorithm via Markov Projection Dynamic Prior, Hu Zhang^{1,2}, Ting Hu², Zhonghua Sun², Zhe Li², Kebin Jia², Jinchao Feng²; ¹Univ. of Birmingham, UK; ²Beijing Univ. of Technology, China. A sparse-view Cherenkov imaging reconstruction method is presented using Markov projection dynamic prior. Experimental results show that this proposed method yields the highest Peak Signal-to-Noise Ratio (PSNR) values of Cherenkov images (23.91 dB and 22.40 dB).

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu2A.27

A Data Management Plan for Open Data, Readable and Reusable by Humans and

AI, Vamshi Damagatla¹, Alessandro Bossi¹, Ilaria Bargigia¹, Antonio Pifferi¹; ¹*Politecnico di Milano, Italy.* We present a general and comprehensive data management plan to create open data which is both human and machine readable. We test and demonstrate its versatility using open AI engines to read and reuse it.

Tu2A.28

FetalSenseM: a Multi-Wavelength Near-Infrared Spectroscopy Device for in-Vivo Oxygenation and Metabolism Measurements, Musa Talati¹, Temisan Illukwe¹, Dimitrios Airantzis^{1,2}, Darshana Gopal¹, Danial Chitnis³, Uzair Hakim¹, Jack Highton¹, Luca Giannoni¹, Niccole Ranaei-Zamani⁴, Subhabrata Mitra⁴, Ilias Tachtsidis¹; ¹Department of Medical Physics and Biomedical Engineering, Univ. College London, UK; ²School of Computing and Mathematical Sciences, Birkbeck, Univ. of London, UK; ³School of Engineering, Univ. of Edinburgh, UK; ⁴EGA Inst. for Women's Health, Univ. College London, UK. This work proposes a new design and novel wavelength selection for a multi-wavelength, multi-distance nearinfrared spectroscopy device, which assesses in vivo changes in oxygenated and deoxygenated haemoglobin and oxidised cytochrome-c-oxidase concentrations, along with tissue saturation.

Tu2A.29

Effect of Tissue Thickness on Background Interference in Confocal Raman Spectroscopy of Fixed Human Histological Skin Slides., Marie Camonin¹, Marine Amouroux¹, Julien Pierson¹, Grégoire Khairallah², Nirmal Mazumder Mazumder⁴, Hervé Rinnert³, Walter Blondel¹; ¹CRAN UMR 7039 CNRS, France; ²Metz-Thionville Regional Hospital, France; ³Institut Jean Lamour UMR 7198, France; ⁴Manipal School of Life Sciences, India. This study investigates the impact of sample thickness in confocal Raman micro-spectroscopy at 532 nm on reducing background interference in deparaffinized human skin histological slides, improving spectral quality and tissue characterization.

Tu2A.30

Can we Accurately Retrieve Oxyhaemoglobin Concentration at 1064nm with TD-NIRS? – a Monte Carlo Simulation Study, Xingmin Li¹, Frederic Lange¹, Aleh Sudakou², Ilias Tachtsidis¹; ¹Univ. College London, UK; ²Nalecz Inst. of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland. This study investigates the accuracy of retrieving oxyhemoglobin concentration at 1064 nm using Monte Carlo simulations with different oxygen saturation levels. The results show the feasibility of using 1064nm only and evaluate the inaccuracy sources.

Tu2A.31

End-to-end Diffuse Optical Tomography for Functional Brain Activation, Hu Zhang^{1,2}, Jiaming Cao¹, Ting Hu², Zhonghua Sun², Zhe Li², Kebin Jia², Hamid Dehghani¹, Jinchao Feng²; ¹Univ. of Birmingham, UK; ²Beijing Univ. of Technology, China. We propose an end-toend reconstruction using a diffusion model to generate high-quality brain activation maps, integrating fNIRS data. Experimental results on simulated fNIRS data demonstrate that the proposed approach improves reconstruction accuracy.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu2A.32

LEDs-Based Handheld Device for Multispectral Imaging, Ranjeet Kumar¹; ¹Queen's Univ. Belfast, U.K., UK. We developed handheld multi-spectral imaging device comprising discrete LEDs (PWM for sequential illumination via Arduino Mega) mounted on inclined 3D-printed unit which was attached to one end of tube-lens and CMOS camera on other end.

Tu2A.33

Three-Beam Interference Photoacoustic Microscopy with Enhanced Detection

View, Xiangru Liu¹, Qi Cui¹, Shutian Liu², Zhengjun Liu², Wei Liu¹; ¹*Harbin Inst. of Technology, Shenzhen, China;* ²*School of Physics, Harbin Inst. of Technology, China.* Photoacoustic microscopy (PAM) also suffers from the limited-view issue. To address this, we propose a novel three-beam interference excitation configuration for PAM, which disrupts the coherence of Aline signals, thereby restoring the detection visibility of vertical structures.

Tu2A.34

Photoacoustic Fiberscope for Oxygenation Imaging of Freely Moving Mouse and Sepsis-Induced Brain Dysfunction, Xiaoxuan Zhong¹, Cong Mai², Yizhi Liang¹, Long Jin³, Xin Li², Bai-Ou Guan¹; ¹*Jinan Univ., China;* ²*Guangdong Provincial People's Hospital, China;* ³*South China Normal Univ., China.* We present head-attached photoacoustic microscopy for brain vascular structure and functional imaging in small animals under free-moving state with 4.5 grams weight, 1.2 mm wide area, 10 µm resolution and 0.2 Hz frame rate.

Tu2A.35

Enhancing Quantitative Fluorescence Imaging with Hyperspectral Structured Light-Sheet Microscopy (HsLSFM), Cedric Ray^{1,2}, Sébastien Crombez¹, Florence Ruggiero^{4,5}, Chloé Exbrayat-Héritier¹, Nicolas Ducros^{3,2}; ¹Universite Claude Bernard Lyon 1, France; ²CREATIS, France; ³INSA Lyon, France; ⁴ENS Lyon, France; ⁵IGFL, France. We present hsLSFM, a hyperspectral structured light-sheet fluorescence microscopy system enhancing fluorophore separation and autofluorescence removal. It improves quantitative imaging for biomedical applications, including developmental biology and live-cell analysis, by integrating structured illumination and spectral unmixing.

Tu2A.36

Parallelized Data Acquisition Using a Fabry-Perot Sensor with Uniform Optical Thickness and a Camera-Based Tomograph for Photoacoustic Imaging, Jan Sievers¹, Claus Villringer², Werner Lebek¹, Taravat Gilani¹, Jan Laufer¹; ¹*Martin-Luther-Univ. Halle, Germany;* ²*Technical Univ. of Applied Sciences, Germany.* To enhance acquisition speed for photoacoustic imaging, parallelized data acquisition scheme based on image-intensified sCMOS camera together with Fabry-Perot sensor with uniform optical thickness imaging is presented. The capability of backward-mode 3D photoacoustic imaging is demonstrated.

Tu2A.37

3D Printed Human Skull Phantoms for Transcranial Photoacoustic Imaging, Hannah Linde¹, Saskia Menzer¹, Jan Laufer¹, Thomas Kirchner¹; ¹Institut für Physik, Univ. of Halle-Wittenberg, Germany. Photoacoustic (PA) waves are strongly distorted and attenuated in skull bone. To study these effects on PA imaging, we designed and 3D-printed tissue-mimicking phantoms of human skull. We present a comparison of results in phantom and ex vivo skull.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu2A.38

Unsupervised Learning-Based Registration Method for Photoacoustic Microscopy Image Sequences, Furong Tang¹, Xiaobin Hong¹, Lidai Wang², Jiangbo Chen¹; ¹South China Univ. of Technology, China; ²City Univ. of Hong Kong, China. An unsupervised deep learning network for real-time correction and registration of fast-scanning photoacoustic microscopy images has been developed, improving speed by 50 times and outperforming traditional methods in extracting dynamic vascular information.

Tu2A.39

PATFOM: A Universal Photoacoustic Tomography Foundation Model for Multi-Task Image Processing, Yutian Zhong¹, Jinchuan He¹, Chaobin Hu¹, Jingqi Yao¹, Long Chen¹, Li Qi¹; ¹Southern Medical Univ., China. We propose PATFOM, a universal foundation model for photoacoustic tomography (PAT). PATFOM is self-supervised pre-trained on the largest PAT image database to date, which contains nearly one million images. Multi-task experiments confirm PATFOM's performance on image restoration, segmentation, light fluence correction, and vessel enhancement.

Tu2A.40

Estimation of Dielectric Parameters in Quantitative Thermoacoustic Tomography, Teemu Sahlström¹, Timo Lähivaara¹, Tanja Tarvainen¹; ¹Univ. of Eastern Finland, Finland. In this work we propose an approach for simultaneous estimation of electrical conductivity and permittivity in quantitative thermoacoustic tomography. The approach is evaluated with simulations using multiple electromagnetic excitations and frequencies.

Tu2A.41

Optical Waveguide Resonance Sensor for Broadband Sensitive Ultrasound

Detection, Chenduo Wang¹; ¹Shenzhen Univ., China. A high-sensitivity broad-bandwidth optical waveguide resonance sensor of ultrasound overcomes the limitations of piezoelectric transducers that are widely used in photoacoustic imaging, which shows great potentials for label-free biomedical photoacoustic investigations.

Tu2A.42

A Deep Learning-Based Speed-of-Sound Correction Model for Vascular Photoacoustic Imaging, Yisu Tian¹, Pengwei Han¹, Yipin Lv¹, Bingxue Zhang¹, Feng Gao^{1,2}, Jiao Li^{1,2}; ¹College of Precision Instrument and Optoelectronics Engineering, TianJin Univ., China; ²State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin Univ., China. A deep learning-based speed-of-sound correction model is proposed, which performs nine image reconstructions and fusions based on different speed-of-sound distributions, ultimately outputting a single-channel clear reconstruction, thereby significantly improving reconstruction quality and reducing artifacts.

Tu2A.43

Hybrid Fluorescence and Magnetic Resonance Imaging (HyFMRI) Platform for Functional Neuroimaging, Zhenyue Chen¹, Yi Chen^{2,3}, Irmak Gezginer^{2,3}, Qingxiang Ding¹, Yoshihara Hikari^{2,3}, Xosé Luís Deán-Ben^{2,3}, Ruiqing Ni^{2,3}, Daniel Razansky^{2,3}; ¹*Tongji Univ., China;* ²*Inst. for Biomedical Engineering and Inst. of Pharmacology and Toxicology, Univ. of Zurich, Switzerland;* ³*Inst. for Biomedical Engineering, ETH Zurich, Switzerland.* We present a hybrid multichannel fluorescence and MRI platform to achieve concurrent measurement of neuronal and astrocytic activity along with hemodynamic responses in anesthetized mice, revealing

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

distinct kinetics and correlations in stimulated responses.

Tu2A.44

LED-Based Photoacoustic Detection of Nitrous Oxide, Daniel d. Santos^{2,1}, Mila Vieira da Rocha^{3,1}, Guilherme Rodrigues Lima⁴, Leonardo Mota², Marcelo Gomes da Silva², Marcus Wolff¹; ¹Hamburg Univ. of Applied Sciences, Germany; ²Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil; ³Instituto Federal Fluminense, Brazil; ⁴Universidade Federal do Espírito Santo, Brazil. The present study aims to detect nitrous oxide (N₂O) by combining a low-cost LED with a differential photoacoustic cell. Preliminary results indicate the possibility of detecting N₂O in trace levels.

Tu2A.45

Potential Clinical Applications of Ultrasound Optical Tomography: Breast Tissue Characterization and Brain Imaging, Akvile Zabiliute-Karaliune¹, Adam Kinos¹, Alexander Bengtsson², David Gustavsson², David Hill¹, Egle Bukarte¹, Emilie Krite Svanberg³, Johannes Swartling², Kevin Shortiss¹, Lars Rippe¹, Magnus Dustler⁴, Maria Ruchkina², Nadia Chaudhry⁴, Paulina Tatidis¹, Predrag Bakic⁴, Sophia Zackrisson⁴, Stefan Kröll¹; ¹Physics, Lund Univ., Sweden; ²Deep Light Vision AB, Sweden; ³Clinical Sciences, Lund Univ., Sweden; ⁴Translational Medicine, Lund Univ., Sweden. Ultrasound optical tomography combines light and ultrasound measuring optical properties deep inside the body. We experimentally characterize cancer mimicking inclusions in breast tissue phantoms and theoretically simulate imaging performance at significant depths inside the brain.

Tu2A.46

Evaluating Image Quality Metrics for Photoacoustic Imaging, Melle van der Brugge², Navchetan Awasthi², Francis Kalloor Joseph¹; ¹*Erasmus MC, Netherlands;* ²*Univ. of Amsterdam, Netherlands.* Assessing the quality of photoacoustic images is essential for algorithm development and clinical translation. This study evaluates the efficacy of full-reference image quality metrics tailored to photoacoustic imaging.

Tu2A.47

Optimizing Photoacoustic Systems for Carotid Artery Imaging, Anjali Thomas¹, Sowmiya Chandramoorthi², Gijs van Soest¹, Francis Kalloor Joseph¹; ¹*Erasmus MC, Netherlands;* ²*Verasonics Inc, USA.* The carotid artery imaging is clinically relevant for plaque quantification but challenging for photoacoustics. We present probe optimization and quantification aspects for in vivo carotid artery imaging on volunteers using two different systems.

Tu2A.48

Assessment of Thermal Diffusivity in a Multi-Composite Tissue-Mimicking Gel by Photothermal Tomography, Katja Arh¹, Boris Majaron^{1,2}; ¹*Jozef Stefan Inst., Slovenia;* ²*Faculty of Mathematics and Physics, Univ. of Ljubljana, Slovenia.* We demonstrate how thermal diffusivity of tissue-mimicking agarose gels with highly conductive alumina scatterers can be assessed by application of three-dimensional pulsed-photothermal imaging (a.k.a photothermal tomography) of an embedded optically absorbing object.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu2A.49

Particle Size Distribution and Scattering Properties of Intralipid 20%, Mona Shahsavari¹, Mendel Engelaer¹, Martine Kuiper², Martin Poinsinet de Sivry de Sivry-Houle¹, Rienk Nieuwland¹, Ton van Leeuwen¹, Edwin van der Pol¹; ¹*Amsterdam UMC Locatie AMC, Netherlands;* ²*Dutch Metrology Inst., Netherlands.* To model the optical properties of Intralipid 20%, the particle size distribution and concentration were measured over a diameter range of 40 to 2,000 nm. These data, combined with traceable refractive index measurements of soybean oil, were used to calculate the scattering coefficient within the independent, single scattering regime.

Tu2A.50

Ultrasound Light Waveguiding to Increase Fluorescent Signals Through Biomimicking Tissue Phantoms, Maxim N. Cherkashin¹, Volodymyr Rohovets², Carsten Brenner¹, Georg Schmitz², Martin R. Hofmann¹; ¹Photonics and Terahertz Technology, RUB, Germany; ²Medical Engineering, RUB, Germany. Ultrasound light waveguiding is a developing technique aiding light delivery inside scattering media. We investigate the potential of this approach to increase fluorescent signals of deep targets using biomimicking tissue phantoms.

Tu2A.51

On the Multi-Focus Femtosecond Laser Surgery System for Keratorefractive Lenticule Extraction, Shaoqun Zeng¹, Huaming Li¹, Jing Yuan¹, Yong Deng¹; ¹*Huazhong Univ of Science and Technology, China.* In order to reduce the incidence of suction loss in Keratorefractive Lenticule Extraction (KLEx), we propose a multi-focus scanning method and achieve KLEx with laser scanning time less than 8s on ex vivo pig eyes.

Room: ICM Room 11

14:00 -- 15:30 Tu3B • Multimodal Imaging Presider: Teemu Sahlström; Univ. of Eastern Finland, Finland

Tu3B.1 • 14:00 (Invited)

Multi-Modal Opto-Ultrasound Imaging via Transparent Ultrasound Transducer, Chulhong Kim¹; ¹*Pohang Univ of Science & Technology, Korea (the Republic of).* Here, we demonstrate multi-modal opto-ultrasound imaging systems via transparent ultrasound transducers (TUTs) that enable seamless integration of ultrasound imaging with various optical imaging such as photoacoustic imaging, optical coherence tomography, and/or fluorescence imaging.

Tu3B.2 • 14:30

Miniaturized Ultrasonic Transducer-Based Photoacoustic Microscopy: Enabling High Spatiotemporal Imaging and Concurrent Multi-Modality Imaging, Chengbo Liu¹; ¹Shenzhen Inst of Adv Technology, CAS, China. We have developed high-spatiotemporal-resolution photoacoustic microscopy (PAM) with miniaturized ultrasonic transducers, which overcome the limitation of spatial and temporal resolution in conventional PAM. Our system enables an expandable field of view and facilitates seamless integration with fluorescence microscopy.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu3B.3 • 14:45

Non-Regular Handheld Transducer Array for Improved Video-Rate Ultrasound and

Photoacoustic Imaging, Shen Song^{1,2}, Yaoyao Cui^{1,2}, Yachao Zhang^{1,2}; ¹Univ. of Science and Technology of China, China; ²Chinese Academy of Sciences, China. We present a dual-modality ultrasound and photoacoustic imaging system with a non-regular handheld transducer array and a spatially corrected beamforming algorithm, enabling high-speed, multi-spectral imaging and improved vascular feature detection in clinical settings.

Tu3B.4 • 15:00

Dual-Modal Photoacoustic and Ultrasound Imaging System for Functional Analysis of Vasculature *in Vivo*, Jeesu Kim¹; ¹*Pusan National Univ., Korea (the Republic of).* We demonstrate a biomedical imaging platform that integrates photoacoustic and ultrasound imaging with conventional B-mode ultrasound to provide complementary functional insights onto structural information. The results successfully visualize vascular structure and blood flow *in vivo*.

Tu3B.5 • 15:15

Explainable Deep Learning-Based Mid-Infrared Photoacoustic Microscopy, Eunwoo Park¹, Sampa Misra¹, Dong Gyu Hwang¹, Chiho Yoon¹, Joongho Ahn¹, Donggyu Kim¹, Jinah Jang¹, Chulhong Kim¹; ¹Pohang Univ of Science & Technology, Korea (the Republic of). We present an explainable deep learning-based mid-infrared photoacoustic microscopy (XDL-MIR-PAM), which consistently generates virtually fluorescence-stained high-resolution images similar to confocal microscopy. The XDL-MIR-PAM successfully identifies cell nuclei and filamentous actin in label-free human cardiac fibroblasts.

Room: ICM Room 22b

14:00 -- 15:30 Tu3C • Full Field OCT Presider: Rainer Leitgeb; Medizinische Universität Wien, Austria

Tu3C.1 • 14:00 (Invited)

Multi-Depth High-Resolution Quantitative Analysis of the Retinal Nerve Fiber Layer with Full-Field OCT, Clémentine Callet^{1,2}, Maxime Bertrand³, Kimberly Guzman^{4,1}, Pedro Mecê⁵, Kate Grieve², Ethan A. Rossi⁴; ¹Department of Ophthalmology, Univ. of Pittsburgh, USA; ²INSERM U968, CNRS, Institut de la Vision, Université de la Sorbonne, France; ³SharpEye, France; ⁴Department of Bioengineering, Univ. of Pittsburgh, USA; ⁵Institut Langevin, ESPCI Paris, CNRS, PSL Univ., France. Full-Field OCT provides high-resolution enface multi-depth retinal imaging with precise axial sectioning, enabling detailed assessment of retinal nerve fiber layer structures. We present imaging results and an image processing pipeline for quantitative biomarker extraction.

Tu3C.2 • 14:30

Rolling-Phase Dynamic Full-Field Optical Coherence Tomography Applications: Enhancing Cellular Imaging in Dense Biological Structures, Tual Monfort¹, Kate Grieve¹, Olivier Thouvenin²; ¹Sorbonne Universite, INSERM, CNRS, Institut de la Vision, France; ²Institut Langevin, ESPCI Paris, Universite PSL, CNRS, France. We present Rolling-Phase D-FFOCT, a novel detection scheme for Dynamic Full-Field Optical Coherence Tomography. This technique uses homogeneous phase measurements. It improves signal-to-noise ratio, reduces speckle,

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

and uncovers new subcellular structures compared to conventional methods.

Tu3C.3 • 14:45

Quantitative Dynamic OCT for High Throughput Drug Screening, Jianbo Tang¹; ¹SUSTech, *China.* This study proposes an OCT-based cell viability quantitative detection method for drug screening.

Tu3C.4 • 15:00

in Vivo Megahertz Dynamic Optical Coherence Tomography of Human Skin, Madita Göb¹, Sazgar Burhan¹, Gereon Hüttmann^{1,2}, Robert Huber^{1,2}; ¹Univ. of Lübeck, Germany; ²Medical Laser Center Lübeck GmbH, Germany. We demonstrate Megahertz optical coherence tomography (MHz-OCT) for *in vivo* skin imaging with dynamic contrast at different resolutions. This study presents recent advances and discusses challenges for clinical translation and real-time *in vivo* applications.

Tu3C.5 • 15:15

Intra-Volume Axial Positioning of Individual en-Face Images in Off-Axis Full-Field Time-Domain Optical Coherence Tomography, Michel Wunderlich^{2,1}, Helge Sudkamp¹, Gereon Hüttmann²; ¹*visotec gmbh, Germany;* ²*Inst. of Biomedical Optics, Univ. of Lübeck, Germany.* Full-field OCT is an option for home and point-of-care devices. A disadvantage is axial distortion in the virtual B-scans. An algorithm has been developed that tracks the axial position of en-face images without additional hardware.

Room: ICM Room 5

14:00 -- 15:30 Tu3A • Wearable, Optical, and Photonic Technologies for Health Monitoring and Diagnostics Presider: Petra Paiè; Politecnico di Milano, Italy

Tu3A.1 • 14:00

Novel Multi-Channel Wearable Devices Reveal New Possibilities for Monitoring Socially Significant Diseases, Viktor V. Dremin¹, Minh Ngoc Nguyen¹, Ilya Rafailov², Sergei Sokolovsky¹, Edik Rafailov¹; ¹Aston Univ., UK; ²Aston Medical Technology Ltd., UK. Wearable devices with ultra-compact semiconductor lasers enable portable blood flow monitoring, featuring channels for perfusion, temperature, fluorescence, and movement. They detect five blood flow rhythms and study tissue metabolism with high sensitivity and robust data analysis.

Tu3A.2 • 14:15

On Site Brain Tumour Detection Using Flow Histology via High Speed Multiphoton SLIDE Microscopy During Ultrasonic Tissue Dissection, Dirk Theisen-Kunde¹, Matthea Thielking², Gregory Berg², Jessica Kren³, Julia Neumann^{4,5}, Matteo Bonsanto³, Sebastian Karpf²; ¹*Medical Laser Center Lübeck, Germany*; ²*Inst. of Biomedical Optics, Univ. of Lübeck, Germany*; ³*Neuro Surgery, Univ. Medical Center Schleswig Holstein, Luebeck, Germany*; ⁴*Inst. of Neuropathology, Univ. Medical Center Hamburg-Eppendorf, Germany*; ⁵*Center for Molecular Neurobiology* (*ZMNH*), Univ. Medical Center Hamburg-Eppendorf (UKE), Germany. During neuro surgery, using ultrasonic aspirator the dissected tissue is thrown away as waste. Here, the cells in the "waste" are analysed with high-speed SLIDE microscopy to discriminate between tumorous and

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

healthy tissue.

Tu3A.3 • 14:30

Towards Wireless, Wearable Sensor for Real-Time Gut Function Monitoring, Nilanjan Mandal¹, Yue Wang¹, Alexander J. Thompson¹; ¹*Imperil College London, UK.* A compact, wearable low-cost fluorescence sensor for gut function assessment demonstrates accurate fluorescein detection, validated through in vitro and in vivo studies, offering enhanced portability and affordability for non-invasive gut health diagnostics.

Tu3A.4 • 14:45

Development of a Fiber Optical Fluorescence Reader for Point-of-Care Monitoring of Piperacillin in Human Serum, Vladislav Reimer¹, Georgios Ctistis³, Katarina Fedorov², Pascal Schröder³, Hainer Wackerbarth³, Dimitrios Theodoridis², Philip Guehlke¹, Christian Waltermann¹, Alexander Mehren¹, Jan Koch¹, Wolfgang Schippers¹; ¹*FiSens GmbH, Germany;* ²*nal von minden GmbH, Germany;* ³*Institut für Nanophotonik Göttingen e.V., Germany.* We demonstrate the first application of a point-of-care fluorescence reader based on fiber-optical spectroscopy for the readout of fluorescence-based assays. As a proof of principle, we determined different piperacillin concentrations in human serum.

Tu3A.5 • 15:00

Towards Background-Free Fiber-Optic SERS Using 2PP-Fabricated Micro-Optics, Yingwei Hou¹, Nilanjan Mandal¹, Belal Ahmad¹, Jang Ah Kim¹, Alexander J. Thompson¹; ¹Imperial College London, UK. To leverage the high sensitivity and specificity of Raman spectroscopy in medical diagnostics, we present two fiber-tip micro-optical components - fabricated via 2-photon polymerization - to allow background-free fiber-optic surface-enhanced Raman spectroscopy.

Tu3A.6 • 15:15

Monitoring of Cerebral Oxygenation with a Pocket-Sized NIRS Device for Aerospace Applications, Michal Kacprzak¹, Piotr Saowsz¹, Mariusz Krej², Anna Gerega¹, Aleh Sudakou¹, Kamil Lipinski¹, Krzysztof Kowalczuk², Stanislaw Wojtkiewicz¹, Lukasz Dziuda², Adam Liebert¹; ¹*IBBE PAN, Poland;* ²*Military Inst. of Aviation Medicine, Poland.* A pocket-size, 8channel (4per hemisphere) portable NIRS device was developed to monitor cerebral oxygenation in real time. It is designed to withstand high g-forces and utilizes Lock-In detection to minimize ambient light and motion artifacts.

Room: ICM Room 11

16:00 -- 17:30 Tu4B • Novel Illumination Presider: Ningbo Chen; Chinese Academy of Sciences, China

Tu4B.1 • 16:00 (Invited)

Parallelized Light Guiding With Ultrasound for Improved Imaging in Scattering

Media, Blanca Mestre-Torà¹, Xosé Luís Deán-Ben^{2,3}, Daniel Razansky^{2,3}, Martí Duocastella^{1,4}; ¹Department of Applied Physics, Univ. of Barcelona, Spain; ²Inst. for Biomedical Engineering and Inst. of Pharmacology and Toxicology, Faculty of Medicine, Univ. of Zurich, Switzerland; ³Inst. for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; ⁴Institut de Nanociència i Nanotecnologia, Univ. of Barcelona, Spain. Ultrasound enables a 200-fold enhancement in light delivery within

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

scattering samples at an optical thickness of 10. As our results demonstrate, ultrasound-induced refractive index gradients act as embedded waveguides within the sample, improving contrast and penetration depth in optoacoustic tomography imaging.

Tu4B.2 • 16:30

High-Speed 1720 nm SRS Fiber Amplifier for Photoacoustic Microscopy of Lipids, Sang Min Park¹, Seongjin Bak¹, Chang-Seok Kim¹, Hwidon Lee¹; ¹*Pusan National Univ., Korea (the Republic of).* We present a stimulated Raman scattering fiber amplifier that delivers optical excitations at 1720 nm, with a pulse duration of approximately 5 ns, pulse energy exceeding 1 µJ, and a repetition rate of 200 kHz.

Tu4B.3 • 16:45

Optoacoustic Mesoscopy Based on Laser Diodes, Alexander G. Ross^{1,2}, Davide D. Giuseppe^{1,2}, Ravikumar Vaghela^{1,2}, Dominik Selzner^{1,2}, Shijia Chen^{1,2}, Philipp Köhler^{1,2}, Vasilis Ntziachristos^{1,2}; ¹*Chair of Biological Imaging, Technical Univ. of Munich, Germany;* ²*Inst. of Biological and Medical Imaging, Helmholtz Munich, Germany.* Herein, we report a new method for high-resolution optoacoustic mesoscopy based on laser diodes. We demonstrate that our method can achieve depth resolutions comparable to traditional laser sources, offering significant size and cost advantages.

Tu4B.4 • 17:00

Photoacoustic Generation with a Constant Intensity Beam, Olivier Jacquin¹, Eric Lacot¹, Olivier Hugon¹, Emmanuel Bossy¹; ¹*LIPhy, Univ. Grenoble Alpes - CNRS, France.* Photoacoustic generation is generally based on the absorption of light beam with a time-modulated intensity. Here, we introduce a photoacoustic microscopy technique based on time-varying absorption, with a beam of constant intensity.

Tu4B.5 • 17:15

Optically Generated Droplet Beams Improve Optoacoustic Imaging of Choroid Thickness as an Alzheimer's Disease Biomarker, Konstantinos G. Mavrakis^{1,2}, Gerasimos Divaris^{1,3}, Maria Tampakaki^{1,4}, Saba N. Khan⁵, Kishan Dholakia^{5,6}, Zacharakis Giannis¹; ¹IESL, FORTH, Greece; ²Materials Science and Technology, Univ. of Crete, Greece; ³Physics, Univ. of Crete, Greece; ⁴Faculty of Medicine, Univ. of Crete, Greece; ⁵School of Physics and Astronomy, Univ. of St Andrews, UK; ⁶School of Biological Sciences, Univ. of Adelaide, Australia. A unique approach to suppress side-lobs of Bessel beams is presented. A Mach-Zehnder-type interferometer is employed to create droplet beams. Droplet illumination is used on murine ocular samples for the investigation of Alzheimer's biomarkers.

Room: ICM Room 22b

16:00 -- 17:30 Tu4C • Al and Image Analysis Presider: Peter Munro; Univ. College London, UK

Tu4C.1 • 16:00

Theoretical Framework for Maximum Correctable Defocus in Optical Coherence Tomography, Yue Zhu^{1,2}, Shuichi Makita², Yoshiaki Yasuno², Naoki Fukutake³; ¹Nanjing Univ. of Science and Technology, China; ²Univ. of Tsukuba, Japan; ³Nikon Corporation, Japan. Highnumerical-aperture optical coherence tomography (OCT) enables sub-cellular imaging but faces

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

resolution-DOF trade-offs. Modeling shows computational refocusing in point-scanning OCT is confocality-limited, while spatially-coherent FFOCT overcomes this, achieving near-infinite MCD, ideal for OCT microscopy.

Tu4C.2 • 16:15

Acceleration of Amplitude-Spectral Dynamic Optical Coherence Tomography Acquisition by Using Deep Learning, Yusong Liu¹, Ibrahim Abd El-Sadek^{1,2}, Cunyou Bao¹, Atsuko Furukawa³, Satoshi Matsusaka³, Yoshiaki Yasuno¹; ¹Computational Optics Group, Univ. of Tsukuba, Japan; ²Department of Physics, Faculty of ScienceDamietta Univ., Egypt; ³Clinical Research and Regional Innovation, Faculty of Medicine, Univ. of Tsukuba, Japan. A neural network generating amplitude-spectra-based dynamic OCT (AS-DOCT) from only 16 OCT frames is demonstrated. It reduces the measurement time for 96.9% and enables a volumetric acquisition time of 26s.

Tu4C.3 • 16:30

An Accelerated T-Matrix Method for Simulating the Focusing of Light in Tissue Using Arbitrary Wavefronts, Sean C. Mitchell¹, Jake A. Bewick², Dylan M. Marques³, Simon Arridge⁴, Peter Munro², Jonathan S. Watkins¹, James Guggenheim^{3,2}; ¹School of Physics and Astronomy, Univ. of Birmingham, UK; ²Department of Medical Physics and Biomedical Engineering, UCL, UK; ³School of Medical Sciences, Univ. of Birmingham, UK; ⁴Department of Computer Science, UCL, UK. We present a new efficient numerical toolkit for scattering light within biological tissue using the T-matrix method. We demonstrate its usefulness in areas such as wavefront shaping.

Tu4C.4 • 16:45

Progress on Digital Wavefront Correction and Spatio-Temporal Optical Coherence Tomography for Retinal Imaging, Jem Love¹, Guozheng Xu¹, Myeong Jin Ju², Destiny Hsu³, Lukasz Kornaszewski⁴, Maciej Wojtkowski⁵, Marinko Sarunic¹; ¹Medical Physics and Biomedical Engineering, Univ. College London, UK; ²The Univ. of British Columbia, Department of Ophthalmology and Visual Sciences, Faculty of Medicine,, Canada; ³Engineering Science, Simon Fraser Univ., Canada; ⁴InCellVu, Poland; ⁵International Centre for Translational Eye Research, Poland. We report our progress on retinal imaging with STOC-T and post-processing resolution enhancement using digital wavefront correction. Results are compared with other instruments looking at structural and functional imaging of the retina.

Tu4C.5 • 17:00

Progress on Deep Reinforcement Learning for Real-Time Defocus and Axial Motion

Correction for OCT, Guozheng Xu¹, Arman Athwal¹, Thomas Smart¹, Marinko Sarunic¹; ¹Univ. College London, UK. We present our progress on a defocus and axial motion correction method for OCT B-scans using deep reinforcement learning. The method corrects both errors concurrently to stabilize human retinal imaging in real-time.

Tu4C.6 • 17:15

Synthetic Gradient Noise: a Framework for Generic Denoising of OCT Images Using Only Artificial Data, Viacheslav Mazlin^{1,2}, Samer Alhaddad^{1,2}, Samuel Boccara³; ¹Langevin Inst., France; ²SharpEye, France; ³Hunter College High School, USA. We show that neural network trained on purely synthetic gradient noise can well generalize to denoise real OCT images that were never seen by the network.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 5 16:00 -- 17:30 Tu4A • Imaging in Medicine and Beyond Presider: Fake Lu; State Univ. of New York, USA

Tu4A.1 • 16:00

Label-Free High-Contrast Imaging of Pollen for Feature Detection, anand kumar¹, Anuj Saxena¹, Sachin Dhawan¹, Siddharth Runkh¹, Lovey Lovey¹, Mukesh Khare¹, Satish K. Dubey¹, Dalip Singh Mehta¹; ¹Indian Inst. Of Technology Delhi, India. This article proposes label-free high-contrast imaging of different pollen with a low-cost LED-based near-field illumination system for small feature detection. In addition, a comparative study with a bright field (BF) microscope has been performed.

Tu4A.2 • 16:15

Detecting Coronary Artery Disease Through Retinal Vessel Analysis Using Polarization Sensitive Optical Coherence Tomography, Hadi Afsharan¹, Girish Dwivedi¹, Barry Cense¹; ¹*The Univ. of Western Australia, Australia.* PS-OCT imaging of retinal blood vessels reveals early indicators of coronary artery disease, offering a non-invasive and cost-effective screening method. This technique detects subtle vascular changes before clinical manifestation of cardiovascular disease.

Tu4A.3 • 16:30

GAN-Based 3D Reconstruction of Skin Lesions from Structured Light Projection Images, Laura Rey-Barroso¹, Francisco J. Burgos-Fernández¹, Meritxell Vilaseca¹; ¹Universitat *Politecnica de Catalunya, Spain.* We propose a GAN-based framework for 3D skin lesion reconstruction from structured light projections, eliminating traditional phase unwrapping and preprocessing. Our approach mitigates motion-induced artifacts, enhancing reconstruction accuracy, efficiency, and clinical applicability in dermatological imaging.

Tu4A.4 • 16:45

Motion Artifact Suppression Using Speed Detection in Handheld Laser Speckle Contrast Imaging: First Results in DIEP Flap Surgery, Anne Rook¹, Ata Chizari¹, Tom Knop¹, Johan Wijbenga², Danny Evers³, Hinne Rakhorst², Wiendelt Steenbergen¹; ¹Biomedical Photonic Imaging group, Univ. of Twente, Netherlands; ²Department of Plastic-, Reconstructive-, Handand Wrist Surgery, Ziekenhuisgroep Twente (ZGT), Netherlands; ³Department of Surgical Oncology, Ziekenhuisgroep Twente (ZGT), Netherlands. This study presents the first automated inter- and intraframe motion correction in handheld LSCI for DIEP flap perfusion monitoring. These results pave the way for more accurate, quantitative, and clinically reliable handheld LSCI measurements.

Tu4A.5 • 17:00

Fast Algorithm for Physical Realizability Check of Experimental Mueller Matrices, Tatiana Novikova^{1,2}, Alexey Ovchinnikov³, Gleb Pogudin¹, Jessica C. Ramella-Roman²; ¹*Ecole Polytechnique, France;* ²*Biomedical Engineering, Florida International Univ., USA;* ³*Department of Mathematics, CUNY Queens College, USA.* Mueller matrix is physically realizable when the associated coherency matrix is positive semi-definite (PSF). We found that calculating coefficients of characteristic polynomial is the fasted algorithm for checking matrix PSF, compatible with video-rate data streaming.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Tu4A.6 • 17:15

Comparative Study of Resting-State Seed Correlation Analysis in Functional RGB and Magnetic Resonance Imaging, Adithep Kawinkij¹, Charly Caredda¹, Fabien C. Schneider², Jacques Guyotat³, Eric Van-Reeth¹, Thiébaud Picart⁴, Bruno Montcel¹; ¹Université de Lyon, *INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69100 Lyon, France, France;* ²Université Jean Monnet Saint-Étienne, CHU de Saint-Étienne, TAPE Research Unit EA 7423, F-42023, Saint-Étienne, France c Service de *Neurochirurgie D, Hospices Civils de Lyon, F69500 Bron, France, France;* ³Service de *Neurochirurgie D, Hospices Civils de Lyon, F69500 Bron, France, France;* ⁴Cranial *Neurosurgical Department, Hospices Civils de Lyon, 69677 Bron, France - Lyon 1 Univ., France.* This single-patient study evaluates resting-state seed correlation analysis comparing functional RGB (fRGB) and magnetic resonance imaging (fMRI) through a novel registration framework. Results show fRGB effectively identifies motor and sensory regions with high precision and specificity complementing to fMRI for real-time intraoperative guidance.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Wednesday, 25 June

Room: ICM Room 11 08:30 -- 10:00 W1B • Theory, Algorithms, and Modeling I Presider: Shinpei Okawa; Hamamatsu Univ. School of Medicine, Japan

W1B.1 • 08:30

Finding the Perfect NIRS Pipeline, Robert J. Ward¹, Felipe Orihuela-Espina¹; ¹Univ. of *Birmingham, UK*. Many real-world phenomena are discrete-dense. One is the the processing (and analysis) pipeline in fNIRS. We propose a metric tensor to navigate the space that permits gradient-based optimization. We illustrate an fNIRS application.

W1B.2 • 08:45

Standardized Assessment of FNIRS Data Quality with NeuroDOT and OXI, Emma Speh¹, Ari Segel¹, Yash Thacker¹, Dan Marcus¹, Muriah Wheelock¹, Adam T. Eggebrecht¹; ¹Washington Univ. School of Medicine, USA. Assessment of raw data quality metrics for optical brain mapping data allows for reproducibility and interpretability of results.

Docker containers facilitate reproductible, standardized workflows with tunable parameters for broad system compatibility.

W1B.3 • 09:00

Resting-State RGB Parcellation: a Data-Driven Approach for Intra-Operative Functional Brain Mapping, Adithep Kawinkij¹, Charly Caredda¹, Fabien C. Schneider², Jacques Guyotat⁴, Thiébaud Picart³, Bruno Montcel¹; ¹Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69100 Lyon, France, France; ²Université Jean Monnet Saint-Étienne, CHU de Saint-Étienne, TAPE Research Unit EA 7423, F-42023, Saint-Étienne, France, France; ³Cranial Neurosurgical Department, Hospices Civils de Lyon, 69677 BRON, France - Lyon 1 Univ., France; ⁴Service de Neurochirurgie D, Hospices Civils de Lyon, F69500 Bron, France, France. Accurate brain mapping during neurosurgery is crucial. We propose a novel seed cross-correlation parcellation method to analyse resting-state functional RGB images, identifying functional regions in singlepatient intraoperative data. Validation against electrical brain stimulation highlights its potential as a vital intraoperative tool.

W1B.4 • 09:15

Investigating the Potential to Estimate Volumetric CSF Morphology with High-Density Diffuse Optical Tomography, Yutian Qin¹, Adam T. Eggebrecht¹; ¹*Mallinckrodt Inst. of Radiology, Washington Univ. of Medicine, USA.* We simulated and analyzed the effects of cerebrospinal fluid depth and thickness on light intensity fall-off curves using high-density diffuse optical tomography. From results, we investigate the possibility to estimate CSF thickness in local regions.

W1B.5 • 09:30

Optimizing Deep Tissue Monitoring with Diffuse Optics: Virtual Tools for TD-NIRS and TD-SCOS Development, Frederic Lange¹, Xingmin Li¹, Lisa Kobayashi Frisk², Turgut Durduran^{2,3}, Ilias Tachtsidis¹; ¹Univ. College London, UK; ²ICFO, Spain; ³ICREA, Spain. We present an instrument simulator framework for optimizing a simultaneous TD-NIRS and TD-SCOS system featuring a multi-pixel SNSPD. Monte Carlo simulations generate realistic data to

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

improve detector performance and enhance depth sensitivity in both modalities.

W1B.6 • 09:45

Optimization of Continuous-Wave NIRS Devices for Placental Monitoring. a Simulation

Study, Charly Caredda¹, Fréderic Lange², Uzair Hakim², Subhabrata Mitra³, Ilias Tachtsidis²; ¹*Creatis, France;* ²*Department of Medical Physics and Biomedical Engineering, Univ. College London, UK;* ³*EGA Inst. for Women's Health, Univ. College London, UK*. NIRS devices take advantage of the near infrared light to monitor deep tissues like brain, muscle or placenta. In this study, we developed a Monte Carlo framework to evaluate the sensitivity of CW-NIRS devices for monitoring the placental function. With this framework, acquisition parameters can be optimized before going into clinical applications.

Room: ICM Room 22a 08:30 -- 10:00 W1C • Functional Microscopy and In-Vivo Tissue Microscopy Presider: Marcel Schubert; Universität zu Köln, Germany

W1C.1 • 08:30 (Invited)

High-Throughput Widefield Fluorescence Localization Microscopy with Labeled red Blood Cells, Zhenyue Chen¹, Quanyu Zhou^{2,3}, Chaim Glück², Lin Tang^{2,3}, Daniel Razansky^{2,3}; ¹*Tongji Univ., China;* ²*Inst. for Biomedical Engineering and Inst. of Pharmacology and Toxicology, Univ. of Zurich, Switzerland;* ³*Inst. for Biomedical Engineering, ETH Zurich, Switzerland.* Current neuroimaging lacks spatiotemporal resolution for capillary-level brain activity. We introduce fluorescence localization microscopy with sparsely-labeled red blood cells (4.9 μm, 1s) enabling cortex-wide angiography and simultaneous neurovascular activity mapping, advancing microcirculation and coupling studies in health/disease.

W1C.2 • 09:00

STIMscope: An Open-Source Real-Time Imaging and Patterned Illumination

Framework, Hamid T. Chorsi¹, Saray Soldado-Magraner¹, Lihui Lu², Yang Dan², Dean Buonomano¹, Daniel Aharoni¹; ¹Univ. of California Los Angeles, USA; ²Univ. of California, Berkeley, USA. We present a reconfigurable spatiotemporal illumination microscopy platform for large field-of-view, single-cell imaging, and patterned illumination, coupled with a real-time closed-loop analysis pipeline. We showcase the system's capabilities through its applications in neural imaging and neuromodulation.

W1C.3 • 09:15

High Resolution Miniaturized Fluorescence Microscopy via Zernike-Based Spatially-

Varying Deconvolution, Liangtao Gu¹, Xinyi Zhu¹, Rui Li², Ning Zhou², Wuwei Ren¹; ¹School of *Information Science and Technology, ShanghaiTech Univ., China;* ²*iHuman Inst., ShanghaiTech Univ., China.* We propose a workflow combining Zernike-based point spread function (PSF) modeling and spatially-varying deconvolution, offering a robust solution for PSF calibration and optical distortion correction. Our method significantly enhances Miniscope image quality and advances its applications in neurobiology.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W1C.4 • 09:30 (Invited)

Self-Supervised Denoising With Temporal Gradient for Dynamic Fluorescence

Images, Wooijn Lee¹, Minseok A. Jang¹, Hyeong Soo Nam¹, Jeonggeun Song¹, Jieun Choi^{2,3}, Joon Woo Song⁴, Jae Yeon Seok⁵, Pilhan Kim^{2,3}, Jin Won Kim⁴, Hongki Yoo¹; ¹Department of Mechanical Engineering, Korea Advanced Inst. of Science and Technology, Korea (the Republic of); ²Graduate School of Medical Science and Engineering, Korea Advanced Inst. of Science and Technology, Korea (the Republic of); ³Graduate School of Medical Science and Engineering, Korea (the Republic of); ⁴Multimodal Imaging and Theranostic Laboratory, Korea Univ. Guro Hospital, Korea (the Republic of). ⁴Multimodal Imaging and Theranostic Laboratory, Korea Univ. Guro Hospital, Korea (the Republic of). We propose a temporal gradient-based self-supervised denoising technique for dynamic fluorescence imaging, improving spatiotemporal redundancy utilization. It enhances fluorescence kinetics interpretation in neuronal and vascular imaging, offering broad potential for biological studies employing fluorescence microscopy.

Room: ICM Room 22b 08:30 -- 10:00 W1D • OCT Methods Presider: Danielle Harper: Univ. of Cambridge, UK

W1D.1 • 08:30 (Invited)

Choroidal Vascular Disease on-Chip Modeling and Assessment with Optical Coherence Tomography, Carlos Cuartas-Vélez¹, Devin Veerman¹, Tarek Gensheimer¹, Andries van der Meer¹, Nienke Bosschaart¹; ¹Universiteit Twente, Netherlands. We present a platform for quantitative analysis of choroidal vascular networks with optical coherence tomography by using an in vitro, organ-on-chip model of the choroid. We demonstrate quantitative assessment of choroidal health and disease conditions.

W1D.2 • 09:00

Advancing the STOC-T System for High-Resolution Imaging of the Human Retina in Vivo, Marta Mikula-Zdankowska¹, Piotr Wegrzyn^{2,1}, Maciej Wojtkowski^{2,1}; ¹Inst. of Physical Chemistry, Polish Academy of Sciences, Poland; ²International Centre for Translational Eye Research, Poland. This work explores the impact of illumination conditions and numerical averaging on SNR in STOC-T. Using a layered scattering object, we show how optimal parameter selection and averaging strategies improve signal quality. Experimental results demonstrate significant performance enhancement, showcased through human retina volumetric imaging.

W1D.3 • 09:15

Minimally-Invasive Common-Path OCT System for Neurosurgery Applications, Gary Evans¹, Jerome Gandar^{2,3}, Simon Thiele⁴, David Segar³, Yoseline Rosales Cabara², Matthew Lapinski¹, Ivana Gantar², Thierry Campiche², Corinne Brana², Michalina Gora², Jules Scholler¹; ¹Clee Medical, Switzerland; ²Wyss Center, Switzerland; ³Albert Einstein College of Medicine, USA; ⁴Printoptix, Germany. This study presents a minimally invasive, forward-viewing common-path endoscopic OCT system for neurosurgery, offering real-time, high-resolution imaging. Tested in-vivo in a rabbit model, the system differentiates brain tissues and detects blood vessels, enhancing surgical precision and reducing haemorrhage risks.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W1D.4 • 09:30

Speckle Reduction Through Angular Compounding in Robotically Assisted MHz-

OCT, Tjalfe Laedtke¹, Sazgar Burhan¹, Simon Lotz¹, Madita Göb¹, Robert Huber^{1,2}; ¹Inst. of Biomedical Optics, Germany; ²Medical Laser Center Lübeck GmbH, Germany. We demonstrate speckle reduction in robotically assisted MHz-OCT by angular compounding. The robot is used to acquire images from different angles, which, after registration, are used for efficient speckle averaging without loss of spatial resolution.

W1D.5 • 09:45

Progress on Multi-Contrast Imaging of the Mouse Retina, Thomas Smart¹, Bruno Charbit¹, Ziqi Zhou¹, Destiny Hsu⁴, Myeong Jin Ju³, Colin Chu^{1,2}, Marinko Sarunic¹; ¹Univ. College London (UCL), UK; ²Moorfields Eye Hospital, UK; ³Univ. of British Columbia, Canada; ⁴Simon Fraser Univ., Canada. We present our progress on correlating in-vivo structural images (OCT, OCTA, PS-OCT, SLO) with ex-vivo molecular contrast images. Our approach will elucidate the cellular composition of the structural features typical encountered in in-vivo retinal images.

Room: ICM Room 5

08:30 -- 10:00

W1A • NIR Spectroscopy and Imaging

Presider: Michael Tanner; Heriot-Watt Univ., UK

W1A.1 • 08:30

Multispectral Intraoperative Optical Imaging of Functional Activation of the Human Cerebral Cortex – Performance Analysis of Different Light Wavelength Bands, Martin Oelschlägel¹, Christian Schnabel¹, Gerald Steiner¹, Edmund Koch¹, Ilker Eyüpoglu², Tareq Juratli², Stephan B. Sobottka²; ¹Clinical Sensing and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Germany; ²Department of Neurosurgery, Carl Gustav Carus Univ. Hospital Dresden, Germany. This work compares the performance of functional activity maps of the human cerebral cortex derived from 8 patients during neurosurgical tumor resection using a multispectral imaging system with three different light wavelength bands.

W1A.2 • 08:45

Using Broadband Near-Infrared Spectroscopy to Track Multiple Chromophores: Applications in Dementia Diagnosis, Deepshikha Acharya¹, Emilia Butters¹, Alexander Caicedo², Li Su^{1,3}, John O'Brien¹, Gemma Bale¹; ¹Univ. of Cambridge, UK; ²Pontificia Universidad Javeriana, Colombia; ³Univ. of Sheffield, UK. Accurate dementia diagnosis requires tracking multiple biomarkers, increasing scan times and cost in an already limited MRI/PET environment. Here, we demonstrate broadband near-infrared spectroscopy as a potential alternative for simultaneous haemody namic, metabolic and cerebrospinal-fluid tracking.

W1A.3 • 09:00

Importance of Distance Correction in Near-Infrared and Intravascular Ultrasound Imaging for Reliable Assessment of the Cardiovascular Tissue Pathobiological State, Lorenzo Ricciardi^{1,2}, Philipp Rauschendorfer^{1,2}, Dimitris Gorpas^{1,2}, Vasilis Ntziachristos^{1,2}; ¹Technical *Univ. Munich, Germany;* ²*Helmholtz Zentrum München, Germany.* We present developments in Near-Infrared Fluorescence and Intravascular Ultrasound (NIRF-IVUS) imaging. By correcting blood attenuation on the fluorescence signal, we enhance the detection of the NIRF, improving

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

the pathobiological state assessment of atherosclerotic tissue.

W1A.4 • 09:15

Development of Intravascular Crosstalk-Free Dual NIRF Imaging System Integrated with Catheter-Based OCT, Yeon Hoon Kim¹, Dong Oh Kang², Yong Geun Lim³, Hyeong Soo Nam¹, Hyun Jung Kim², Ryeong Hyun Kim², Kyeongsoon Park³, Jin Won Kim², Hongki Yoo¹; ¹KAIST, Korea (the Republic of); ²Korea Univ. Guro Hospital, Korea (the Republic of); ³Chung-Ang Univ., Korea (the Republic of). An intravascular dual-spectrum NIRF/OCT system was developed for crosstalk-free multimodal imaging for atherosclerosis assessment. Through phantom and in vivo experiments, it precisely detects osteogenesis and macrophages, enhancing structural and molecular characterization for improved cardiovascular diagnostics.

W1A.5 • 09:30

Assessment of Joint Integrity via Near-Infrared Spectroscopic Estimation of Biomarkers in Synovial Fluid: a Potential Tool for Early Detection of Osteoarthritis, Fatemeh Shahini^{1,3}, Sanna Oikari², Nithin Sadeesh¹, Ervin Nippolainen¹, Harold Brommer⁴, Juha Töyräs³, Petteri Nieminen², Isaac O.Afara¹; ¹Department of Technical Physics, Univ. of Eastern Finland, Finland; ²Faculty of Health Sciences, School of Medicine, Inst. of Biomedicine, Univ. of Eastern Finland, Finland; ³Diagnostic Imaging Center, Kuopio Univ. Hospital, Finland; ⁴Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht Univ., Netherlands. This study investigates the capacity of near-infrared spectroscopy (NIRS) for classifying hyaluronan (HA) levels in equine synovial fluid. NIRS, combined with machine learning, discriminated between low and high HA levels with an accuracy of 81%, highlighting its potential as a promising rapid osteoarthritis diagnostic tool.

Room: ICM Room 11 10:30 -- 12:00 W2B • Advances in Instrumentation and Technology III Presider: Adam Eggebrecht; Washington Univ. in St Louis, USA

W2B.1 • 10:30

Standardised Testing Procedure Based on Optical Phantoms for Validation of Photonics Instrumentation Aimed at Clinical Monitoring of the Placenta, Luca Giannoni¹, Musa Talati¹, Darshana Gopal¹, Uzair Hakim¹, Angelos Artemiou¹, Fréderic Lange¹, Subhabrata Mitra¹, Ilias Tachtsidis¹; ¹Univ. College London, UK. We present here a standardised procedure based on multiple optical phantoms (solid and liquid), for testing, and validation of photonics technological solutions and instrumentation that aims at in vivo, clinical monitoring of the human placenta.

W2B.2 • 10:45

Liquid-Crystal Display-Based Dynamic Phantom for Pulse Oximetry Characterisation, Hui Ma^{1,2}, Dario Angelone^{1,2}, Claudia Guadagno³, Stefan Andersson-Engels^{1,4}, Sanathana Konugolu Venkata Sekar^{1,4}; ¹*Biophotonics, Tyndall National Inst., Ireland;* ²*Engineering Science, Univ. College Cork, Ireland;* ³*BioPixS Ltd, Ireland;* ⁴*Physics, Univ. College Cork, Ireland.* A light-guided dynamic phantom was developed to simulate microvascular dynamics for biomedical applications, particularly pulse oximetry calibration. The phantom enables real-time optical property modulation, generating heamodynamics signals across multiple wavelengths for device validation and standardisation.
Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W2B.3 • 11:00

Optical Hand Phantom with Defined Optical Properties, Markus Wagner¹, Florian Foschum¹, Alwin Kienle¹; ¹*ILM Ulm, Germany.* A homogeneous optical silicone phantom in the shape of a hand, with defined absorption and scattering properties, was developed to match real hand reflectance, optimized using scattering particles and five absorbing pigments.

W2B.4 • 11:15

Diffuse Reflectance Spectroscopy System Radiometrically Calibrated for Quantitative Optical Measurements in Scattering Media, Augustin Vernay¹, Guillaume Blanquer¹, Milena Sofra¹, Rémi Gerbelot¹, Pierre Blandin¹, Mathieu Perriollat¹; ¹*CEA - LETI, France.* To perform quantitative PPG and DRS measurements, an original bench and a radiometric calibration procedure have been developed. On homogeneous and calibrated phantoms, the measurements were compared with simulations.

W2B.5 • 11:30

Linking Fluorescence Spectroscopy and 31P MRS in NADH Phantoms, Giorgi Asatiani¹, Arthur Gautheron¹, Laurent Mahieu-Williame¹, Helene Ratiney¹, Bruno Montcel¹; ¹*CREATIS - INSA LYON, France*. Glioblastoma exhibits significant metabolic alterations, making tracking energy metabolism important for its characterization. This could be crucial for glioblastoma resection in neurosurgery. We link two NADH monitoring methods, showing linear dependence on phantom concentrations.

W2B.6 • 11:45

Simulation, Optimisation, and Validation of CoMind R1: a Multichannel Interferometric System for Monitoring Cerebral Blood Flow at Late Times-of-Flight, Anurag Behera¹, Veronika Parfentyeva¹, Dominic Hill¹, Stella Avtzi¹, Octave Etard¹, Alexandra Tran-Van-Minh¹, Youssef Ibrahim¹, Ali Mehmed¹, Artur Istufaj¹, Jan Goodrich¹, Nav Singh¹, Saeed Darabi¹, Pablo Villar Sanjurjo¹, Taimoor Ali¹, Yoojin Kim¹, Tanvi Tambe¹, Clarissa Lin¹, Simone Sturniolo¹, Alexandar Ruesch¹, Yuqian Zhang¹, Amir Salehi Lashkajani¹, Sujit Malde¹, Jan Andersen¹, Gordon McCabe¹, Chloe Maine¹, Matt Thackrah¹, Dawid Borycki¹, Tanja Dragojevic¹, Claus Lindner¹, Robert J Cooper¹; ¹CoMind, UK. In this work, we validate CoMind R1 and demonstrate its ability to retrieve cerebral pulsatile blood flow at time-of-flight exceeding 1 ns, with findings further confirmed by Monte Carlo simulations in a multilayer geometry.

Room: ICM Room 22a 10:30 -- 12:00 W2C • Applications to Cell Biology and Neuroimaging Presider: Francesca Bragheri; Istituto di Fotonica e Nanotecnologie, Italy

W2C.1 • 10:30 (Invited)

Sensing Cell-Level Contractility Deep Inside Cardiac Organoids Using

Microlasers, Nachiket V. Pathak¹, David Ripp¹, Wiebke Luther¹, Matthias König¹, Stefan Jahnel², Sasha Mendjan², Malte C. Gather¹, Marcel Schubert¹; ¹Humboldt Center for Nano- and Biophotonics, Univ. of Cologne, Germany; ²Inst. of Molecular Biotechnology of the Austrian Academy of Sciences, Austria. Microlasers are promising devices for deep tissue sensing applications. We present the integration of microlasers into large cardiac organoids, the sensing of single cell contractility, and discuss the depth limit under single and multiphoton excitation.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W2C.2 • 11:00

Unraveling Epithelial Cell Networks: Graph-Based Microscope Image Analysis, Ronny J. Tonato Zambrano¹, Frédérique Mittler³, Lionel Hervé¹, Sophie Achard², Maxim Balakirev³, Guillaume Godefroy¹; ¹Univ. Grenoble Alpes, CEA-Leti, France; ²Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, France; ³Univ. Grenoble Alpes, CEA, INSERM, IRTSV, Large-Scale Biology, France. A graph-based approach is implemented to analyze and study epithelial cellular network formations over time. Network connectivity is computed through graph theory-based metrics, which exhibit an interesting behaviour to distinguish between experimental conditions.

W2C.3 • 11:15

Towards a General-Purpose Foundation Model for Signal Extraction in Calcium Imaging of Neuronal Network Activities, Weisheng Zhang¹, Junhao Liang¹, Lingjie Kong¹; ¹Tsinghua Univ., China. In dissecting neuronal circuits through calcium imaging, yet it relies on manual segmentations to extract neuronal signals. We present a generalizable foundation model that achieves robust signal extraction across diverse imaging conditions and species.

W2C.4 • 11:30

Multimodal PAM, OCT, and Fluorescence Imaging Guided Stem Cell Treatment of Macular Degeneration, Phuc Nguyen², Wei Qian³, Abigail Fahim¹, Xueding Wang¹, Yannis Paulus²; ¹Univ. of Michigan, USA; ²Department of Ophthalmology, Wilmer Eye Inst., Johns Hopkins Universtiy, USA; ³IMRA America Inc, USA. A non-invasive imaging system was developed to track transplanted hiPSC-RPE cells in rabbits. Labeled cells were monitored using photoacoustic microscopy (PAM), optical coherence tomography, and fluorescence imaging, revealing migration and integration into injured sites, demonstrating feasibility for tracking stem cells in regenerative therapies.

W2C.5 • 11:45

Label-Free Microscopy for Optogenetic Investigations of Arrhythmia in Human Cardiomyocyte Networks Expressing Chrimson, Robert Wendland¹, Felix Schmieder¹, Muhammad A. Sikandar², Wolfram-Hubertus Zimmermann², Olaf Bergmann², Lars Büttner¹, Jürgen Czarske¹; ¹Laboratory of Measurement and Sensor System Techniques, TUD Dresden Univ. of Technology, Germany; ²Department of Pharmacology and Toxicology, Univ. Medical Center Goettingen, Germany. Advances in label-free microscopy of holographically stimulated cardiomyocytes are presented. We use optogenetically controlled contraction wavefront shaping to model spiral waves causing arrhythmia as a potential pathway for improved treatment strategies.

Room: ICM Room 22b 10:30 -- 12:00 W2D • Contrast: Elastography and PS Presider: Myeong Jin Ju; Univ. of British Columbia, Canada

W2D.1 • 10:30 (Invited)

Three-Dimensional Imaging of Mechanical Contrast in Human Breast Using Dynamic Optical Coherence Tomography, Matt Hepburn^{1,2}, Seweryn Morawiec², Joel Bellesini¹, Ken Foo¹, Marta Skrok², Szymon Tamborski², Renate Zilkens^{1,3}, Laura Gale⁴, Mireille Hardie⁴, Saud Hamza⁵, Anmol Rijhumal⁴, Christobel Saunders^{3,6}, Brendan F. Kennedy^{1,2}; ¹School of

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Engineering, Univ. of Western Australia, Australia; ²Inst. of Physics, Nicolaus Copernicus Univ. in Torun, Poland; ³School of Medicine, The Univ. of Western Australia, Australia; ⁴PathWest, Fiona Stanley Hospital, Australia; ⁵Breast Centre, Fiona Stanley Hospital, Australia; ⁶School of Medicine, The Univ. of Melbourne, Australia. We demonstrate a novel approach to generate contrast between healthy and cancerous human breast tissue based on changes in mechanical properties using dynamic optical coherence tomography, validated using co-registered histology.

W2D.2 • 11:00

New Understanding of Phase-Sensitive Optical Coherence Tomography Displacement Measurement, Andrea Mazzolani¹, Jiayue Li², Balazs Dura-Kovacs¹, Brendan F. Kennedy³, Peter Munro¹; ¹Univ. College London, UK; ²Univ. of Western Australia, Australia; ³Nicolaus Copernicus Univ. in Torun, Poland. Phase-sensitive OCT determines displacement from the phase difference between consecutive acquisitions. This study introduces a novel physicsbased model that describes how speckle characteristics influence the measured phase difference and propose a new displacement estimation technique.

W2D.3 • 11:15

Estimation and Comparison of Brainstem Fiber Orientation via Diffusion MRI Tractography and Polarization Sensitive OCT, Isabella Aguilera¹, Travis Sawyer¹, Elizabeth Hutchinson¹; ¹Univ. of Arizona, USA. dMRI-based tractography methods reconstruct neural pathways but often lack detailed microstructural information. This study compares fiber orientation distributions in the human brainstem obtained through Constrained Spherical Deconvolution Tractography and polarization-sensitive OCT.

W2D.4 • 11:30

Polarization Sensitive Optical Coherence Tomography With Single Input for Imaging the Polarization State Within Various Samples, Johannes Reinhold¹, Christian Schmidt¹, Miriam Sasse¹, Johannes Rohr^{1,3}, Ronja Koehler^{1,3}, Jonas Golde², Lars Kirsten¹, Christian Hannig³, Edmund Koch⁴, Julia Walther¹; ¹Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, Technical Univ. Dresden, Germany; ²Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Germany; ³Polyclinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Faculty of Medicine Carl Gustav Carus, Technical Univ. Dresden, Germany; ⁴Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technical Univ. Dresden, Germany. Polarization-sensitive optical coherence tomography (PS-OCT) was performed to characterize reflectivity, Stokes parameters, retardation and degree of polarization in stretched polycarbonate, human dental hard material ex vivo and oral mucosa in vivo.

W2D.5 • 11:45

Setup of a Polarization Sensitive Ultra-High Resolution

Visible-Light OCT, Johannes Reinhold¹, Christian Schnabel², Peter Cimalla², Lars Kirsten¹, Edmund Koch², Julia Walther¹; ¹Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, Technical Univ. Dresden, Germany; ²Department of Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technical Univ. Dresden, Germany. Broadband visible light is used to implement one of the highest resolving polarization sensitive OCT systems with an aimed axial resolution of 1.4µm and an intended application in ophthalmology and for examining human oral mucosa.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 5

10:30 -- 12:00 W2A • Machine Learning for Biophotonics Diagnosis Presider: Igor Meglinski; Aston Univ., UK

W2A.1 • 10:30

AI-Driven Single Shoot Spectral Imaging for Non-Invasive Dermatological

Analysis, Marcello Melis¹, shayesteh naghinajad¹, Damiano Scalabrin¹, Xi chen¹, Marca Macellari¹; ¹*Profilocolore SRL, Italy.* Proposed Dermatological Spectral Imaging System (DeSIS) combines patented optics and AI, providing 98% accurate CIELAB and 13-band spectral imaging (300-1000 nm) in a single shoot. It enables real-time, non-invasive, high-accuracy skin diseases mapping and monitoring.

W2A.2 • 10:45

Recognition of Human Liver Cancers by Label-Free Nonlinear Microscopy and Machine Learning, Roberta Galli¹, Sandra Korn¹, Daniela Aust¹, Gustavo B. Baretton¹, Jürgen Weitz¹, Edmund Koch¹, Carina Riediger¹; ¹Dresden Univ. of Technology, Germany. Tumor recognition was demonstrated on samples of 150 patients. Neural network classification of ninety-thousand images of colorectal liver metastases, hepatocellular carcinoma and matched liver tissue achieved a sensitivity and a specificity of 91% and 96%.

W2A.3 • 11:00

Multiple Excitation Wavelengths PpIX Fluorescence Spectroscopy for Gliomas Delineation Assisted by Machine Learning, Hermine A. Quardon¹, Arthur Gautheron^{1,2}, Antoine Uzel¹, David Meyronet^{3,4}, Bruno Montcel¹, Thiébaud Picart^{5,4}, Cedric Ray¹; ¹*CREATIS, France;* ²*CPE, France;* ³*Department of Neuropathology, Hospices Civils de Lyon,, France;* ⁴*Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon, France;* ⁵*Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France.* A method for preprocessing and classifying fluorescence measurements to distinguish tumorous from healthy tissue is proposed, as 5-ALA fluorescence-guided surgery, effective for high-grade gliomas, is less use-ful for low-grade gliomas without visible fluorescence.

W2A.4 • 11:15

A Novel Deep Learning-Based OCT Approach for Multiparametric Bacterial Colony Classification and Accurate Diagnosis, Mateusz Guzniczak¹, Agnieszka Ulatwoska-Jarza¹, Anna Wieliczko², Anna Matczuk³, Igor Buzalewicz¹; ¹Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw Univ. of Science and Technology, Poland; ²Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw Univ. of Environmental and Life Sciences, Poland. The study presents the concepts of rapid, label-free OCT-based multiparametric phenotyping of bacterial colonies using attenuation coefficient (μT). Retrieved 2D-μT maps exhibit significant predictive potential, with 86.3% to 100% of colonies accurately classified by species.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W2A.5 • 11:30

Pioneering Robotically Assisted Laser Arthroplasty: First Cadaveric

Demonstration, Samuel Withers^{1,2}, Kaylene Schutz¹, Brett Robertson^{1,2}, Riaz Khan^{1,2}; ¹*ArthroLase, Australia;* ²*Univ. of Western Australia, Australia.* This study investigated robotically-assisted laser arthroplasty for unicompartmental knee replacement in a cadaveric model. The system demonstrated capacity for large scale bone removal with submillimetre accuracy (0.57-0.61mm deviation), highlighting promise for arthroplasty applications.

W2A.6 • 11:45

Multimodal Imaging and AI-Based Analysis of Fungi Hyphae in Tissue Sections, Saskia M. Wolter¹, Lorenzo Vinco^{2,3}, Andrea Rabolini³, Eleonora Erriquez⁴, Eric Fantuzzi⁴, Francesco Crisafi⁴, Matteo Negro⁴, Daniela Pelzel¹, Anna Mühlig¹, Ferdinand von Eggeling¹, David Pertzborn¹; ¹Department of Otorhinolaryngology, Jena Univ. Hospital, Germany; ²NIREOS s.r.l., Italy; ³Department of Physics, Politecnico di Milano, Italy; ⁴Cambridge Raman Imaging S.r.l., Italy. This research compares conventional staining techniques and advanced imaging approaches, including MALDI-MSI, HSI, and Stimulated Raman spectroscopic imaging, for enhancing fungal detection in tissue sections.

Room: ICM Hall B0 12:00 -- 14:00 W3A • Joint Posters Session III

W3A.1

A Tailor-Made Multiview Fluorescent Macro-Imaging Platform for the Investigation of Long-Distance Ca²⁺ Signaling in Adult Plants, Giorgia Tortora¹, Bianca M. Orlando Marchesano², Stefano Buratti², Matteo Grenzi², Andrea Bassi¹, Alex Costa², Alessia Candeo¹; ¹Politecnico di Milano, Italy; ²Università degli Studi di Milano, Italy. We present the development of a tailor-made double-view large field of view macro-imaging fluorescent system for studying the propagation of Ca²⁺ waves in adult plants in response to external stimuli.

W3A.2

Progress on the Development of Zebrafish Optoretinography System to Observe Light-Evoked Response of Retina, Hang Chan Jo¹, Robert J. Zawadzki^{2,3}, Dae Yu Kim¹; ¹Department of Electrical and Computer Engineering, Inha Univ., Korea (the Republic of); ²UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, UC Davis, USA; ³UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, UC Davis, USA. Optoretinography, an analysis of light-evoked morphological change of retinal structures based on optical coherence tomography image sequences, can provide insight into the underlying processes of the phototransduction activation cascade.

W3A.3

Towards Multi-View 3D Dental Imaging Based on Optical Coherence

Tomography, Stephan Becker¹, Julia Grundmann², Antonia Starcke¹, Vincenz Porstmann³, Christian Hannig², Jonas Golde¹; ¹Fraunhofer IWS, Germany; ²Policlinic of Operative Dentistry, Periodontology and Pediatric Dentistry, TU Dresden, Faculty of Medicine,

Germany; ³*Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, TU Dresden, Faculty of Medicine, Germany.* Dental imaging is a promising OCT application but limited in visualizing deeper structures and shadowed regions. We show the fusion of multi-view

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

volumetric teeth measurements based on refraction and optical delay correction, validated by μ CT.

W3A.4

Novel Technique of Phase Stabilisation in Swept-Source OCT, Alejandro Martinez Jimenez¹, Adrian G. Podoleanu¹, Adrian Bradu¹; ¹Univ. of Kent at Canterbury, UK. This work presents a technique to correct laser-induced phase variations in Swept-Source optical coherence tomography instruments. Preliminary results show significant improvement from an initial 3.6 radians to less than 0.1 radians when using our approach.

W3A.5

Femtosecond Bioprinting of Cellular Spheroids, Bastian Kreidl¹, Stefanie Sudhop¹, Heinz P. Huber¹, Hauke Clausen-Schaumann¹; ¹Hochschule München, Germany. Facing the increasing popularity of 3D-cellular systems as alternative to classical 2D-culture models, Femtosecond Bioprinting (FSB) has been advanced, overcoming former geometrical constraints, now enabling the high precision transfer of individual mammalian cellular spheroids.

W3A.6

Development of Endoscopic Optical Coherence Tomography and *in-Vivo* **Monitoring of the Inflammatory Bowel Disease in Mice,** Muktesh Mohan^{1,2}, Kanwarpal Singh^{1,2}; ¹*Max-Planck-Institut für die Physik des Lichts, Germany;* ²*Max-Planck-Zentrum für Physik und Medizin, Germany.* We aim to create a non-invasive method for detecting IBD using a 1310 nm endoscopic optical coherence tomography (OCT) system. Mice with acute colitis underwent longitudinal colon imaging for real-time monitoring of disease progression.

W3A.7

Ex-Vivo Measurements of Eardrum Vibrations Using Optical Coherence

Tomography, Pieter Lievens², Sam van der Jeught², Max Eldrett¹, Adrian Bradu¹; ¹Univ. of *Kent, UK*; ²Univ. of *Antwerp, Belgium.* We present a swept-source optical coherence tomography instrument purposely developed to measure the vibrational response of the rabbit eardrum. Our preliminary results suggest that the reduced thickness compared to the human eardrum allows for lower inertia, thus shifting the tympanic membrane's frequency response towards higher frequencies.

W3A.8

Accurate Measurements of the Axial Positions of High Reflective Layers in Spectral Domain Interferometry, Lucy Abbott¹, Adrian G. Podoleanu¹, Adrian Bradu¹; ¹Univ. of Kent, UK. This work presents a method that accurately senses the absolute positions of highly reflective layers without requiring resampling of the interferometric chirped signals or compensating for unbalanced dispersion.

W3A.9

Image Quality Enhancement on OCTA Retina Images Using a Deep Neural Network, Berfin Dinç¹, Mahmut Kaya^{4,3}, Serhat Tozburun^{2,1}; ¹*Izmir Biomedicine and Genome Inst., Dokuz Eylul Univ., Turkey;* ²*Izmir Biomedicine and Genome Center, Dokuz Eylul Univ., Turkey;* ³*Associate Professor Mahmut Kaya Clinic, Turkey;* ⁴*Faculty of Medicine, Dokuz Eylul Univ., Turkey.* The study introduces an artificial intelligence algorithm that uses narrow-field data to enhance wide-field OCTA images. This enhancement improves image quality in en-face and depth, achieving

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

an 80% Structural Similarity Index with high-resolution B-scan images.

W3A.10

Adapting the Opto-Mechanical Characteristics of Intervertebral Discs for Photoacoustic

Probing, Roman Allais², Valentin Espinas^{1,4}, Pauline Brige^{3,4}, Antoine Capart¹, Anabela Da Silva¹, Olivier Boiron²; ¹Aix Marseille Univ, CNRS, Centrale Méditerranée, Institut Fresnel, France; ²Aix Marseille Univ, CNRS, Centrale Méditerranée, IRPHE, France; ³Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France, France; ⁴Aix-Marseille Univ, Laboratoire d'Imagerie Interventionnelle Expérimentale (LIIE), France. We developed intervertebral disc phantoms using agarose and TiO2, enabling independent tuning of optical absorption and reduced scattering to match physiological values, while density and specifi c heat capacity remain within 10% of target values.

W3A.11

High Fluorescence of Phytochromes Does Not Require

Chromophore Protonation, Franz-Josef Schmitt¹, Sagie Katz², Hoang Trong Phan³, Fabian Rieder¹, Jan Laufer¹, Peter Hildebrandt²; ¹Inst. of Physics, Martin-Luther-Universität Halle-Wittenberg, Germany; ²Inst. of chemistry, Technische Universität Berlin, Germany; ³Leibniz Inst. for New Materials, Germany. Two single-domain phytochromes, miRFP670nano3 and miRFP718nano, contain BVs deprotonated at one of the inner pyrrole rings, which is unusual for tetrapyrroles in proteins. The rates of proton exchange most probable determine the fluorescence quantum yields.

W3A.12

The Fluorescence Yield of Red pH Sensitive Proteins is Mainly Determined by Stability and Internal Water Contact of the Chromophore, Franz-Josef Schmitt¹, Amna Shah¹, Hoang Trong Phan², Christian Tüting³, Fabian Rieder¹, Alina-Sophie Henneberger¹, Farzin Ghane Gholmohamadi¹, Panagiotis L. Kastritis³, Jan Laufer¹; ¹Inst. of Physics, Martin-Luther-Universität Halle-Wittenberg, Germany; ²Leibniz Inst. for New Materials, Germany; ³Inst. of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Germany. The different pH dependence of the time resolved fluorescence spectra in two red-shifted fluorescent proteins, mCardinal and mNeptune are explained by differences in internal water contact and H-bonds between chromophore and the surrounding residues.

W3A.13

An *in Vivo* Corneal Static Biomechanical Property Measurement Device Based on Optical Coherence Tomography and Negative Pressure Adhesion, Shaoqun Zeng¹, Honghao Wang¹, Jing Yuan¹, Yong Deng¹; ¹Wuhan National Laboratory for Optoelectronics, Huazhong Univ. of Science and Technology, China. An *in vivo* corneal static biomechanical measurement device based on optical coherence tomography and negative pressure adhesion system was developed in this study, providing a new tool for clinical corneal biomechanical evaluation.

W3A.14

Stripe-Like Raster Scanning for Large-Area OCT Imaging, Rene Riha¹, Adrian G. Podoleanu¹, Manuel Marques¹, Adrian Bradu¹, Radu Boitor², Ioan Notingher²; ¹Univ. of Kent, UK; ²Univ. of Nottingham, UK. By combining a galvo scanner with a motorised XY-stage, we propose stripe-like raster scanning for large-area OCT. We provide calculations for lateral dimensions, and test the technique on an 8 cm × 5 cm sample.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W3A.15

Wavelength Segmentation-Based Phase Analysis for Enhanced Axial Measurement

Range in Full-Field Optical Coherence Microscopy, Minju Jeong¹, Jaeheung Kim¹, Hwidon Lee^{1,2}, Chang-Seok Kim^{1,2}; ¹*Pusan National Univ., Korea (the Republic of);* ²*Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Korea (the Republic of).* SS-OCM enables submicron-resolution phase imaging but its measurement range is limited by 2π ambiguity. This study extends the axial range without system modifications by integrating wavelength-segmented phase imaging with FF-SS-OCM for bioimaging.

W3A.16

Stability-Enhanced Phase Measurement Through Optical Coherence Microscopy with a Stretched-Pulse Mode-Locked Laser, Jaeheung Kim¹, Seongjin Bak¹, Gyeong Hun Kim², Hwidon Lee¹, Chang-Seok Kim¹; ¹*Pusan National Univ., Korea (the Republic of);* ²*Wellman Center for Photomedicine, Harvard Medical School, USA.* We present a phase-stable sweptsource optical coherence microscopy system utilizing a custom-built stretched-pulse modelocked laser. Achieving milliradian phase stability and a 5-MHz A-line rate, our system enables high-precision phase imaging for advanced biomedical applications.

W3A.17

Adaptive DBSCAN for OCT Retinal Layer Segmentation Applications, Agata Gut¹, D Robert Iskander¹; ¹Wroclaw Tech, Poland. A concept of an adaptive DBSCAN algorithm, incorporating local rotations of the designated core points, is proposed to improve the image processing tool that utilizes statistical information of OCT speckle for the retinal layer segmentation.

W3A.18

Application of Raman Spectroscopy for Ovarian Cancer Detection, Farhat Zeinab¹, Nicolas Errien¹, Romuald Wernert², Veronique Verriele², Frederic Amiard¹, Philippe DANIEL¹; ¹*IMMM - UMR CNRS 6283, France;* ²*Maine et Loire, ICO Paul Papin, France.* This study was to evaluate if Raman spectroscopy combined to chemometric method such as Principal Component Analysis could differentiate, in the case of Ovarian cancer between cancerous and normal tissues from different types of samples.

W3A.19

Efforts in Adapting a Raspberry Pi to Full-Field Optical Coherence Tomography, Taylor Sanderson¹, Adrian Bradu¹, Ranjan Rajendram², Adrian G. Podoleanu¹; ¹Univ. of Kent, UK; ²Moorfields Eye Hospital, UK. The adaptation of a Raspberry Pi and low-cost camera into a full-field OCT system is demonstrated. Challenges in utilising the low-cost components are discussed. Promise is shown for a compact and cost-effective OCT solution.

W3A.20

Enhancement of Retinal OCT Scans Using EDSR Model With an SSIM-Based Loss

Function, Berfin Dinç³, Mahmut Kaya^{4,1}, Serhat Tozburun^{2,3}; ¹Associate Professor Mahmut Kaya Clinic, Turkey; ²Department of Biophysics, Faculty of Medicine, Izmir Biomedicine and Genome Center, Dokuz Eylul Univ., Turkey; ³Izmir Biomedicine and Genome Inst., Dokuz Eylul Univ., Turkey; ⁴Faculty of Medicine, Dokuz Eylul Univ., Turkey. We present an EDSR model with an SSIM-based loss function, achieving an 88% SSIM score and an 11% improvement in similarity. This approach outperforms MSE-based EDSR and enhances the perceptual quality of retinal OCT images.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W3A.21

Understanding Dynamic Structures in Breast Cancer Spheroid by Full-Field and Point-Scanning Dynamic Optical Coherence Tomography, Ann M. Detje¹, Nobuhisa Tateno², Atsuko Furukawa³, Rion Morishita², Yoko Miura¹, Satoshi Matsusaka³, Yoshiaki Yasuno²; ¹*Inst. of Biomedical Optics, Univ. of Lübeck, Germany;* ²*Computational Optics Group, Univ. of Tsukuba, Japan;* ³*Faculty of Medicine, Univ. of Tsukuba, Japan.* We investigate fine dynamic structures of cancer spheroids by dynamic optical coherence tomography (DOCT) and fluorescence imaging. Small clusters of cells were found in DOCT images, and they were identified as apoptotic cells.

W3A.22

Impact of Defocus on OCT Signal Strength - Surface Model Versus Particle Model, Simon Hoffmann¹, Werner Nahm¹; ¹*Inst. of Biomedical Engineering, Karlsruher Institut für Technologie, Germany.* OCT Signal strength shows a severe dependency on defocus. This dependency was found to be even more pronounced when comparing backscattering from particles to a planar surface. This result highlights the importance of focusing OCT.

W3A.23

Eye-Screen: A Compact Line-Field Spectral-Domain Optical Coherence Microscopy Design for Diabetic Peripheral Neuropathy Screening, Samuel J. Lawman¹, Uazman Alam¹, Yalin Zheng¹, Yao-Chun Shen¹; ¹Univ. of Liverpool, UK. The device under development aims to measure sub-basal nerve loss. Here we present its updated measured performance metrics. Up to 1.1 M AScans/s, 70 (84) dB single frame SNR (absolute sensitivity) and ~2x2x2 µm resolution.

W3A.24

Fluorescence Lifetime Tomography, Fabian Rieder¹, Karl O. Schnelle¹, Jan Laufer¹, Franz-Josef Schmitt¹; ¹Department of Physics, Martin Luther University, Germany. Time-resolved fluorescence tomography enables precise spatial differentiation of fluorophores with overlapping spectra. Using a scanning system, we acquired decay kinetics from a sample phantom filled with acridine orange and fluorescein, revealing distinct lifetime contrasts.

W3A.25

Detecting the Optical Sweeping Direction of a Fast Swept Source Without an Optical Spectrum Analyser, Adrian Fernandez Uceda¹, Adrian G. Podoleanu¹; ¹Univ. of kent, UK. In this paper, a technique is presented for determining the sweeping direction of any swept source without recurring to optical spectrum measurements but using elements of the OCT system only.

W3A.26

Keeping Cells Alive in Microscopy, Herbert Schneckenburger¹, Christoph Cremer²; ¹*Hochschule Aalen, Germany;* ²*Kirchhoff-Inst. for Physics, Univ. Heidelberg, Germany.* Non-phototoxic light doses in 3D and super-resolution microscopy range from a few mJ/cm2 up to more than 100 J/cm2 and strongly depend on wavelength, the mode of illumination as well as the illuminated light spot.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W3A.27

Visualization and Cellular Uptake of Carbon Dots in Ovarian Cancer Cells Using Label-Free Optical Microscopy, Vivek Rastogi¹, Pooria Lesani^{1,2}, Ashutosh Kumar¹, Neelkanth M. Bardhan^{1,3}, Paula T. Hammond¹, Angela M. Belcher¹; ¹Massachusetts Inst. of Technology, USA; ²School of Science, RMIT Univ., Australia; ³Break Through Cancer, USA. Carbon dots (CDs) have emerged as a cutting-edge nanomaterial for bioimaging, offering exceptional photostability, tunable fluorescence, biocompatibility, and low toxicity. This study presents a label-free microscopy approach to analyze CDs interactions with ovarian cancer cells and their cellular dynamics.

W3A.28

Development of Stokes-Mueller Polarimetry Integrated With Machine Learning for Tissue Characterization, Sindhoora K. Melanthota¹, Spandana K U¹, Raghavendra U¹, Sharada Rai¹, KK Mahato¹, Nirmal Mazumder¹; ¹Manipal Academy of Higher Education, India. We developed a machine learning (ML) enabled Stokes-Mueller microscope for the quantitative analysis of tissue specimen which provides key structural insights through various polarization parameters such as DOP, DOLP, DOCP, and anisotropy (r).

W3A.29

Fast and Ultrasensitive Multispectral SRS Imaging With new Light Source, Ingo Rimke¹, Lenny Reinkensmeier², Rene Siegmund², Gero Stibenz¹, Peter Trabs¹, Stefan Popien¹, Carli Canela³, Xin Gao³, Wei Min³, Alexander Egner²; ¹APE GmbH, Germany; ²Department of Optical Nanoscopy, Inst. for Nanophotonics, Germany; ³Department of Chemistry, Columbia Univ., USA. A new picosecond light source for ultra-sensitive SRS microscopy allow imaging in the CH- and fingerprint region as well as of Raman labels. Its fast tuning of about one second enables easy multispectral SRS imaging.

W3A.30

How Visual Cortex Neurons Encode the External World: Miniaturized 2 Photon Calcium Imaging in Freely Moving Mice., Mathias Imezgaren¹, Guy Bouvier², Yannick Goulam Houssen¹; ¹*Hearing Inst., France;* ²*CNRS, France.* We recorded neuronal calcium signals using miniature two-photon microscopy during visual stimulation to understand how sensory representations in the visual cortex V1 are modulated by self-generated versus external motion.

W3A.31

Cell Identification Using Machine Learning of red Blood Cells and Blood Coagulation Structures in Flow Cytometry Using Digital Holographic Microscopy, Hideki Funamizu¹, Taiki Sasaki¹; ¹*Muroran Inst. of Technology, Japan.* In this study, we report the cell identification using machine learning of morphological parameters based on phase information of red blood cells and blood coagulation structures in flow cytometry using digital holographic microscopy.

W3A.32

Hybrid Fractional Fourier Transform Framework for Off-Axis Digital Holographic

Microscopy, Müge Topcu^{1,2}, Serhat Tozburun^{1,2}; ¹*Izmir Biomedicine and Genome Center, Turkey*; ²*Izmir International Biomedicine and Genome Inst., Dokuz Eylul Univ., Turkey.* A hybrid fractional Fourier transform (FrFT) framework was proposed to enhance the resolution of amplitude reconstructions in digital off-axis holographic microscopy by combining digital and optical FrFT approaches through a simulation study.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W3A.33

Active Optical Dispersion Manipulation for Line-Scanning Temporal Focusing

Multiphoton Microscopy, Chia-Yuan Chang¹, Jui-Chi Chang¹, Cheng-Yu Lee¹, Ping-Hua Shih¹; ¹National Cheng Kung Univ., Taiwan. Multiphoton-based temporal focusing microscopy provides fast and axial-resolved fluorescence imaging. With line-scanning mechanism, the axial resolution is improved. Furthermore, a two-stage optical dispersion manipulation is proposed for optimization of laser pulse width and multiphoton excitation.

W3A.34

High-Speed Time-Resolved Fluorescence Measurements with Minimal Distortion: Over 1.2 Photon per Period in TCSPC With a Hybrid Photodetector, Piergiorgio Daniele¹, Gennaro Fratta¹, Ivan Labanca¹, Giulia Acconcia¹, Ivan Rech¹; ¹Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy. Time-Correlated Single-Photon Counting (TCSPC) enables the measurement of ultra-fast optical signals with picosecond resolution. However, measurement speed is limited by pile-up distortions. This work demonstrates an advanced correction method, enabling high-speed TCSPC with minimal distortion.

W3A.35

Implementation of Real Time Image Reconstruction and Visualization in Single Molecule Localization Microscopy, Pranjal Choudhury¹, Amalesh Kumar¹, Bosanta R. Boruah¹; ¹*Indian Inst. of Technology Guwahati, India.* We present a method for near real-time single-molecule localization microscopy, enabling immediate super-resolved image visualization during acquisition. This approach reduces processing time and disk space usage, benefiting live-cell imaging and high-resolution clinical studies.

W3A.36

High-Speed Label-Free Imaging of Epithelial-Mesenchymal Transition in Cancer Cells by Stimulated Raman Microscopy, Maximilian Brinkmann¹, Felix Neumann¹, Ramon Droop¹, Steffen Ullmann¹, Thomas Würthwein¹, Tim Hellwig¹, Silke Morris¹, Eva Döpker², Björn Kemper², Jürgen Schnekenburger²; ¹*Refined Laser Systems, Germany;* ²*Biomedizinisches Technologiezentrum, Universität Münster, Germany.* We present a high-speed, label-free Stimulated Raman Scattering (SRS) microscopy system for real-time epithelial-mesenchymal transition imaging in cancer cells.

W3A.37

3D Tracking Algorithm for Neocaridina Davidi in a Dual Camera System, Roberto Fernández¹, Diego Álvarez², Miguel Moscoso², Jorge Ripoll³; ¹Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Spain; ²Departamento de Matemáticas, Universidad Carlos III de Madrid, Spain; ³Departamento de Bioingeniería, Universidad Carlos III de Madrid, Spain. A 3D tracking system for the invertebrate Neocaridina davidi was developed using a dual-camera setup and a 3D Object Tracking Algorithm. The algorithm's ability to extract locomotion dynamics, interindividual interactions, and environmental responses was evaluated using synthetic data, simulating shrimp movement under experimental conditions.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W3A.38

High-Resolution Fluorescence Imaging Reveals Heterogeneous Extracellular Matrix

(ECM) in *Mycobacterium Tuberculosis (MTB)* **Biofilms.,** Bei Shi Lee¹, Abigail Joyce Deloria², Mengyang Liu², Rainer A. Leitgeb², Wolfgang Drexler², Michael Berney^{2,3}, Richard Haindl²; ¹*Epidemiology, Biostatistics and Prevention Inst., Univ. of Zurich, Switzerland;* ²*Center for Medical Physics and Biomedical Engineering, Medical Univ. of Vienna, Austria;* ³*Albert Einstein College of Medicine, USA.* Fluorescence confocal imaging of *Mycobacterium tuberculosis* biofilms stained with NucGreen, Calcofluor White, and Concanavalin A Alexa Fluor 647 reveals bacilli in an ECM with β- and α-linked polysaccharide scaffolds, implicating drug tolerance and immune evasion.

W3A.39

Liver Tumour Diagnostics Using an Optical Fibre Probe for Time-Resolved

Autofluorescence Imaging, Dafne Suraci¹, Luca Tirloni³, Chiara Gatto³, Serena Pillozzi⁴, Lorenzo Antonuzzo^{4,5}, Antonio Taddei^{3,4}, Riccardo Cicchi^{1,2}; ¹National Inst. of Optics, National Research Council (INO-CNR), Italy; ²European Laboratory for Non-linear Spectroscopy (LENS), Italy; ³Hepatobiliopancreatic Surgery, Careggi Univ. Hospital, Italy; ⁴Univ. of Florence, Italy; ⁵Oncology, Careggi Univ. Hospital, Italy. In this study, we propose a novel fibre-based autofluorescence lifetime imaging probe for the diagnosis of hepatic cancer. Our approach facilitates real-time tumour margin delineation, thereby providing metabolic insights that enhance diagnostics and surgical precision.

W3A.40

Quad-SPIM: a Novel Light-Sheet Microscope for High-Speed Imaging of Human Brain Tissue, Laura Perego¹, Franco Cheli¹, Samuel Bradley^{1,2}, Danila Di Meo^{1,3}, Luca Giannoni⁴, Josephine Ramazzotti¹, Michele Sorelli^{1,5}, Giacomo Mazzamuto^{1,2}, Irene Costantini^{1,3}, Francesco S. Pavone^{1,2}; ¹Univ. of Florence, European Laboratory for Non-Linear Spectroscopy, Italy; ²Physics and Astronomy, Univ. of Florence, Italy; ³Department of Biology, Univ. of Florence, Italy; ⁴Department of Medical Physics and Biomedical Engineering, Univ. College London, UK; ⁵Department of Information Engineering, Univ. of Florence, Italy. Light-sheet fluorescence microscopy is a powerful imaging technique for neuroscience, enabling highresolution, fast volumetric imaging of large brain tissues. We present a novel microscope using four wavelengths to simultaneously reveal structural details with micrometre precision.

W3A.41

3D Light-Sheet Tilted Image Reconstruction Pipeline Based on Image Formation

Analysis, Lionel Hervé¹, Anne-Flore Mailland¹, Xavier Mermet¹, Benjamin Guillaud¹, Emily Tubbs², Chiara Paviolo¹, Camille Laporte¹, Pierre Blandin¹; ¹Univ. Grenoble Alpes, CEA, LETI, France; ²Univ. Grenoble Alpes, CEA, INSERM, IRIG Biomics, France. A fluorescence light-sheet microscope dedicated for monitoring organ-on-chips is reported. The constraints impose tilted imaging. We have modelled the phenomena in order to reconstruct the volumes faithfully and to optimise the geometric configuration.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W3A.42

Compact Fluorescence Microscope with Extended Depth-of-Field for Mitigating Jitters During Microgravity Simulation, Andy Shi², Hao Tang¹, Lingjie Kong¹; ¹*Tsinghua Univ., China;* ²*Tsinghua Univ. High School, China.* For real-time observation of biodynamics during microgravity simulation with random positioning machine, optical microscopes resisting jitters are required. We develop a compact fluorescence microscope of extended depth-of-field by >20-fold, significantly enhancing imaging stability and efficacy.

W3A.43

Tilted Lenses Take the Advantage of Lorentz Transformation to Rotate an Image Around the Axis of View, Matus Sobona¹, Radovan Sokol², Maik Locher³, Jakub Belin^{1,2}; ¹*Central European Inst. of Technology, Czechia;* ²*Brno Univ. of Technology, Czechia;* ³*Univ. of Glasgow, UK.* We present an imaging system, consisting of nine tilted lenses that perform an image rotation around the axis of view. For the design, Lorentz transformation and Wigner rotation are applied.

W3A.44

Advantages and Drawbacks of Back-Scattering Scanning Polarimetric Setups for Medical Applications, Bhanu P. Singh¹, Nadine A. Coorens^{1,2}, Vladislav Stefanov¹, André Stefanov¹; ¹IAP, Univ. of Bern, Switzerland; ²Faculty of Science and Technology, Univ. of Twente, Netherlands. We present two back-scattering scanning polarimetric setups that separate incoming and outgoing light using a beamsplitter and a mirror. We discuss their advantages, drawbacks, and compare effectiveness in determining a Mueller matrix for polystyrene suspension.

W3A.45

Moringa Leaf Powder and Seed Oil: Infrared, Raman and DFT Insights, Kashika Khatri¹, Urbi Kundu², Aparajita Bandyopdhyay³, Amartya Sengupta¹; ¹Indian Inst. of Technology Delhi, India; ²THz Spectroscopy and Imaging Laboratory, IIT Delhi, India; ³JW Goethe Univ., Germany. This study analyzes Moringa leaf powder and seed oil using Raman and Fourier Transform Infrared (FTIR) spectroscopy. Experimental results are supported by simulated theoretical spectra of key Moringa constituents.

W3A.46

Fiber-Coupled, sub-ps Ti-Sapphire Laser for Multi-Excitation Wavelength, Head-Mounted Two-Photon Excitation Fluorescence Microscopy of the Brain, Gergely Szipocs¹, Adam Krolopp^{1,2}, Shau Poh Chong³, Peter Török³, Robert Szipocs^{1,2}; ¹*R&D Ultrafast Lasers Kft., Hungary;* ²*HUN-REN Wigner RCP, Hungary;* ³*Nanyang Technological Univ., Singapore.* A fibercoupled, sub-ps Ti-sapphire laser operating in three wavelength regimes at around 810 nm, 920 nm and 1000 nm is introduced for *in vivo* nonlinear microscopy of the brain.

W3A.47

Light-Sheet Light-Field Macrophotography for Imaging Neuronal Structure, Kai-Lun Ting¹, Feng-Chun Hsu¹, Chun-Yu Lin¹, Bo-Heng Liu², Ann-Shyn Chiang², Shean-Jen Chen¹; ¹College of Photonics, National Yang Ming Chiao Tung Univ., Taiwan; ²Brain Research Center, National Tsing Hua Univ., Taiwan. We present a high-speed, high-resolution volumetric imaging system using light sheet illumination and light-field macrophotography, enabling rapid 3D reconstruction with enhanced resolution via microlens arrays and Richardson-Lucy deconvolution.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W3A.48

Intravital Mid-Infrared Pump and Probe Detection of Metabolites, Björn Puttfarcken^{1,2}, Constantin Berger^{1,2}, Jiawang Qiu^{1,2}, Miguel Pleitez^{1,2}; ¹*Inst. of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Germany;* ²*Chair for Biological Imaging, Technical Univ. of Munich, Germany.* A mid-infrared pump–probe system was developed for non-invasive metabolite sensing, showing accurate spectral detection in samples, concentration-dependent responses, and in-vivo feasibility. The new sensor aims to enhance specificity through spectral unmixing.

W3A.49

Experimental Variabilities When Studying Plant Epidermal Monolayer Using Continuous Wave Terahertz Spectroscopy, Urbi Kundu¹, Mayuri Kashyap², Aparajita Bandyopdhyay¹, Amartya Sengupta¹; ¹*Indian Inst. of Technology Delhi, India;* ²*CSIR–Central Glass & Ceramic Research Inst. (CSIR–CGCRI), India.* Continuous-wave THz spectroscopy for real-time analysis of plant epidermal monolayer in exposed environmental conditions require study of experimental variabilities, crucial for generating relevant results.

W3A.50

Real-Valued Intensity Transmission Matrix Based Multimode Fibre Beamshaping for Biophotonics Applications, Hui Ma^{1,2}, Rekha Gautam¹, Stefan Andersson-Engels^{1,3}, Sanathana Konugolu Venkata Sekar^{1,3}; ¹*Biophotonics, Tyndall National Inst., Ireland;* ²*Engineering Science, Univ. College Cork, Ireland;* ³*Physics, Univ. College Cork, Ireland.* A beam-shaping system based on the real-valued intensity transmission matrix of a multimode fiber manipulates illumination patterns at its distal tip enabling structured illumination diffuse reflectance for quantitative endoscopic applications.

W3A.51

Image-Reconstruction Algorithm for an Object Covered by a Strongly Scattering Layer, Also Applicable for 3D Imaging, Eliška Anna Michalicová², Jakub Belin^{1,2}; ¹Central European Inst. of Technology, Czechia; ²Brno Univ. of Technology, Czechia. We present an iterative algorithm for image reconstruction when the target object is covered by a strongly scattering layer.

Room: ICM Room 11 14:00 -- 15:30 W4B • Theory, Algorithms, and Modeling II Presider: Turgut Durduran; ICFO -Institut de Ciencies Fotoniques, Spain

W4B.1 • 14:00

An Adaptive Stochastic Gauss-Newton Method for Optical Tomography Using the Monte Carlo Method, Jonna Kangasniemi¹, Meghdoot Mozumder¹, Aki Pulkkinen¹, Tanja Tarvainen¹; ¹Univ. of Eastern Finland, Finland. An adaptive stochastic Gauss-Newton method for reconstructing absorption and scattering coefficients in optical tomography using the Monte Carlo method for light transport was developed. Based on numerical simulations, the method provides reconstructions with good accuracy.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W4B.2 • 14:15

Deep Tissue Characterization by Ultrasound Optical Tomography Hybrid Monte Carlo

Model, Stefan Susnjar^{2,1}, Adam Kinos², Predrag Bakic^{3,5}, Sophia Zackrisson^{5,4}, Johannes Swartling¹, Stefan Kröll², Nina Reistad²; ¹SpectraCure AB, Sweden; ²Department of Physics, Lund Univ., Sweden; ³Medical Radiation Physics, Department of Translational Medicine, Lund Univ., Sweden; ⁴Department of Imaging and Physiology, Skåne Univ. Hospital, Sweden; ⁵Diagnostic Radiology, Department of Translational Medicine, Lund Univ., Sweden: ⁵Diagnostic Radiology, Department of Translational Medicine, Lund Univ., Sweden: We propose analytical expressions for ultrasound optical tomography and verify them in Monte Carlo simulations. The proposed hybrid analytical-statistical Monte Carlo model enables quantitative reconstruction of up to 5-centimetre deep tissue absorption inhomogeneities.

W4B.3 • 14:30

Digital Twin for Deriving Optical Properties of Turbid Media Using Cubic Spline-

Parameterized Phase Functions, Levin Stolz¹, Alwin Kienle¹, Florian Foschum¹; ¹*ILM Ulm, Germany.* We present a goniometric method combining Monte Carlo simulations and inverse fitting to extract optical properties of turbid media. Our approach improves phase function modeling via cubic splines, enhancing accuracy beyond the Henyey-Greenstein approximation.

W4B.4 • 14:45

Enhanced Imaging Through Scattering Tissue Using NIR Multispectral Fusion

Techniques, Ariel Schwarz¹, Amir Shemer¹, Nisan Atiya¹, Yevgeny Beiderman², Yossef Danan¹; ¹*JCE, Israel;* ²*HIT, Israel.* This study introduces a non-invasive optical diagnostic method using near-infrared (NIR) imaging and image fusion techniques to detect internal tissue objects, like cancerous tumors, providing accurate reconstructions of hidden tissue layers in experimental setups.

W4B.5 • 15:00

Enhancing Deep Inclusion Localisation in Diffuse Optical Tomography by Time-Gated Datatypes, Ifechi Ejidike¹, Michael Tanner¹; ¹*Heriot-Watt Univ., UK.* In diffuse optical tomography, measurements are much more sensitive to the surface. We explore how time-gated data-types could give insight into the correct normalisation to improve deep inclusion sensitivity.

W4B.6 • 15:15

NIRFASTerFF: An Open-Source Python Package for Efficient Photon Modeling, Jiaming Cao¹, Samuel Montero-Hernandez¹, Rickson Mesquita¹, Hamid Dehghani¹; ¹Univ. of *Birmingham, UK.* This work presents a new Python package, NIRFASTerFF, an open-source, cross-platform, efficient, FEM-based tool for solving multi-modal photon modeling problems in diffuse optics, powered by highly parallelized algorithms on both CPU and CUDA-enabled GPU.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 22a 14:00 -- 15:30 W4C • Detection Technologies

Presider: Amir Rosenthal; Technion Israel Inst. of Technology, Israel

W4C.1 • 14:00 (Invited)

Light-Sheet Photoacoustic Imaging with Camera Based Ultrasound Detection, Kevin Schitter¹, Guenther Paltauf¹, Robert Nuster¹; ¹Univ. of Graz, Austria. We propose two camerabased photoacoustic imaging methods to generate images with optical resolution, which utilize optical phase-contrast detection and structured-line excitation to reconstruct both 2D and 3D images, potentially improving spatial resolution and imaging speed.

W4C.2 • 14:30

Ultraviolet Optical-Resolution Photoacoustic Microscopy of Fresh Tissue Slices Using a Static Ultrasound Detector and Fast Galvo Scanning, Daniel Toader¹, Robert Nuster¹, Guenther Paltauf¹; ¹*Karl-Franzens-Universitaet Graz, Austria.* Photoacoustic microscopy with optical resolution in the ultraviolet is demonstrated on fresh biological tissue. Model-based reconstruction generates depth-dependent images from signals generated by combining a static, focused ultrasound receiver and a rapidly scanned excitation beam.

W4C.3 • 14:45

2D Spiral Array with Single Element Microlenses for 3D Optoacoustic Imaging, Marc Fournelle¹, Wolfgang Bost¹, Christian Degel¹, Steffen Tretbar¹; ¹*Fraunhofer IBMT, Germany.* We investigated the possibility to apply defocusing micro-lenses on a 2D spiral array based on a 4 MHz piezocomposite material. We showed an improvement of the opening angle from 16 to 37° and could reconstructed point targets with a FWHM of 420 µm.

W4C.4 • 15:00

Wide-Field Optical-Resolution Optoacoustic Microscopy Utilizing a Stationary Silicon-Photonics Acoustic Detector for Reflection and Transmission Imaging

Configurations, Tamar Harary¹, Michael Nagli¹, Nathan Suleymanov¹, Ilya Goykhman¹, Amir Rosenthal¹; ¹*Technion, Israel.* We present a novel OR-OAM system with a stationary silicon photonics acoustic detector (SPADE) with semi-isotropic sensitivity, enabling high-resolution, large-field imaging without acoustic path scanning. This advances clinical translation through a compact, miniature probe design.

W4C.5 • 15:15

Ultrasound Transmission Matrix Measurement Using an All-Optical System, Ron Moisseev¹, Amir Rosenthal¹; ¹*Technion, Israel.* We designed an all-optical ultrasound system for transmission matrix measurement using optoacoustic generation and silicon-photonics-based detection, overcoming piezoelectric transducer limitations. The system enables wideband, omnidirectional response, high signal fidelity, and imaging capabilities were demonstrated.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 22b 14:00 -- 15:30 W4D • New Technology I Presider: Adrian Podoleanu; Univ. of Kent, UK

W4D.1 • 14:00 (Invited)

Modelling Confocal and Offset Detection Paths of an Adaptive Optics Scanning Laser Ophthalmoscope to Guide Contrast Optimization, Julia Granier^{1,2}, Elena Gofas Salas^{1,2}, Kate Grieve^{1,2}, Peter Munro³; ¹Institut De La Vision Paris, France; ²CHNO des Quinze-Vingts, France; ³Univ. College London, UK. We present a model for confocal and offset detections in an adaptive optics scanning laser ophthalmoscope to enable optimized contrast and enhanced visualization of transparent retinal features.

W4D.2 • 14:30

Holoscopic Microendoscopy, Svea Höhl¹, Tim Eixmann¹, Martin Ahrens^{2,3}, Noah Heldt^{2,3}, Peter König^{3,4}, Ori Katz⁵, Gereon Hüttmann^{2,3}; ¹*Medical Lasercenter Lübeck, Germany;* ²*Inst. of Biomedical Optics, Universität zu Lübeck, Germany;* ³*Airway Research Center North (ARCN), German Center of Lung Research (DZL), Germany;* ⁴*Inst. of Anatomy, Universität zu Lübeck, Germany;* ⁵*Inst. of Applied Physics, Hebrew Univ. of Jerusalem, Israel.* We present a compact endoscopic holoscopy setup using multicore fibers (MCFs) for three-dimensional imaging of scattering tissues. This method, which integrates holographic recording, enables bend-insensitive imaging, improving the potential for optical biopsies.

W4D.3 • 14:45

3D Printed Encapsulated Microlens for Endoscopic Optical Coherence

Tomography, Claudia Imiolczyk^{1,2}, Marco Wende³, Alok K. Kushwaha^{1,2}, Lei Xiang^{1,2}, Nikoo Soltan¹, Harald Giessen⁴, Robert A. McLaughlin^{5,2}, Claire F. Jones^{1,2}, Jiawen Li^{1,2}; ¹School of Electrical and Mechanical Engineering, The Univ. of Adelaide, Australia; ²Inst. for Photonics and Advanced Sensing, The Univ. of Adelaide, Australia; ³Inst. of Applied Optics and Research Center SCoPE, Univ. of Stuttgart, Germany; ⁴4th Physics Inst. and Research Center SCOPE, Univ. of Adelaide, Australia. We present a novel, robust, miniaturized 3D printed encapsulated probe for endoscopic optical coherence tomography, featuring improved mechanical stability, high-resolution, large-depth-of-focus in vivo imaging, demonstrated in a pig's intrathecal space, offering potential to advance diagnostics.

W4D.4 • 15:00

Hand-Held Fibre Optic 2D Scanner with Single 1D Actuation for Structural Imaging and Fluorescence Quantification, Muhammad Safwan Burhanudin¹, Alexander Yong¹, Nazihah Husna Abdul Aziz¹, Yixin Hong¹, Kaicheng Liang¹; ¹Nanyang Technological Univ., Singapore. Cancer margins are difficult to differentiate by naked eye. Dual-modality OCT-guided and fluorescence detection using a piezoelectric bender scanner enabled simultaneous structural 3D information and fluorescence measurement. Validation experiments were performed on murine tissue.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W4D.5 • 15:15

Assessing Coronary Blood Flow in Vivo: a Quantitative Approach Using Intracoronary

Doppler OCT, Fan Yang¹, Chenguang Li⁴, Qingyue Tan¹, Wei Yu¹, Giovanni Luigi De Maria^{2,5}, Fu Wang¹, Jigang Wu³, Shengxian Tu^{1,2}; ¹School of Biomedical Engineering, Shanghai Jiao Tong Univ., China; ²Department of Cardiovascular Medicine, Univ. of Oxford, UK; ³Univ. of Michigan-Shanghai Jiao Tong Univ. Joint Inst., Shanghai Jiao Tong Univ., China; ⁴Department of Cardiology, Zhongshan Hospital, Fudan Univ., China; ⁵Oxford Univ. Hospitals NHS Foundation Trust, Univ. of Oxford, UK. We present a method for in vivo quantification of coronary blood flow using Doppler OCT, integrating phase noise reduction and Doppler angle compensation. Ex vivo and in vivo experiments demonstrate promising results for accurate assessments.

Room: ICM Room 5

14:00 -- 15:30 W4A • Raman Spectroscopy II Presider: Rainer Leitgeb; Medizinische Universität Wien, Austria

W4A.1 • 14:00

Intraoperative Assessment of Oral Cancer Margins with Rapid Fiberoptic Raman Spectroscopy, Zhiwei Huang¹; ¹National Univ. of Singapore, Singapore. We report the development of an intraoperative, real-time oral cancer demarcation platform using fiberoptic Raman spectroscopy with the accuracy of 91%, providing a robust and objective surgical margin diagnosis for OSCC patients.

W4A.2 • 14:15

Portable Handheld Probe-Based Confocal Raman System: a Versatile Tool for Non-Invasive Objective Assessment of Dermatological Conditions, Dinish U.S¹, Keertana Vinod Ram¹, Randall Ang¹, Renzhe Bi¹, Yik Weng Yew², Steven Tien Guan Thng², Malini Olivo¹; ¹*A**STAR Skin Research Labs, Singapore; ²National Skin Center, Singapore. We report on the development and application of confocal Raman spectroscopy (CRS) system with a flexible handheld probe for non-invasive skin assessment, enabling detailed biochemical analysis in the epidermis to objectively evaluate various skin conditions.

W4A.3 • 14:30

Fiberoptic Raman Spectroscopy for in Vivo Detection of non-Muscle Invasive Bladder Cancer at Cystoscopy, Zhiwei Huang¹; ¹National Univ. of Singapore, Singapore. A customized fiberoptic Raman spectroscopy system is developed to acquire in vivo bladder tissue Raman spectra for improving in vivo bladder early cancer detection during cystoscopic examination.

W4A.4 • 14:45

Raman Spectroscopy of Biofluids for the Detection of Lymph Node Metastasis in Oral Cancer Subjects: A Pilot Study, Panchali Saha^{1,2}, Poonam Joshi¹, Pankaj Chaturvedi¹, Murali Krishna C^{1,2}; ¹ACTREC, Tata Memorial Centre, India; ²Homi Bhabha National Inst., India. Lymph node metastasis is a critical prognostic indicator for oral cancers. Fusion model of serum and salivary Raman spectral data achieved correct identification of 100% node negative and 86% of node positive cases.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W4A.5 • 15:00

Cold Atmospheric Plasma Jet's Effect on Hamster Buccal Pouch Carcinogenesis: A Serum Raman Spectroscopy Study, Poonam Gawli¹, Kshama Pansare¹, Aksay Vaid², Arti Hole¹, Murali Krishna K. Chilakapati¹, Alphonsa Joseph², Mukesh Ranjan²; ¹*TMC-ACTREC*, *India;* ²*IPR*, *India*. Cold atmospheric plasma jet treatment on hamster-buccal pouch cancers resulted in complete remission. Thus, suggesting as potential therapeutic approach for oral cancers. Further, findings also suggest efficacy of serum Raman spectroscopy in minimally invasive treatment monitoring.

W4A.6 • 15:15

Development of a Raman Spectroscopy Biofluid Interrogation Platform Applied to Lung Cancer Detection from Blood Plasma, Frédéric Leblond^{1,2}, Katherine Ember^{1,2}, Esmat Zamani Ahmad^{1,2}, Frédérick Dallaire^{1,2}, Éloise D'Amours^{1,2}, Marwa Boonas^{1,2}, Juliette Selb^{1,2}, Romane Le Roy Pépin^{1,2}, Guillaume Sheehy^{1,2}, Nassim Ksantini^{1,3}; ¹Polytechnique Montréal, Canada; ²Research Center, Centre hospitalier de l'Université de Montréal, Canada; ³CENTECH, Exclaro, Canada. We present a low-cost lung cancer detection technique using a Raman spectroscopy biofluid platform. Our study is tested in 263 patients and may bring lung cancer screening to a wider population.

Room: ICM Room 11

16:00 -- 18:00 W5B • Machine Learning in Diffuse Optics Presider: Davide Contini: Politecnico di Milano. Italy

W5B.1 • 16:00 (Invited)

High-Accuracy Diffuse Optical Tomography Using Neural Network

Postprocessing, Jiaming Cao¹, Joe O. Evans¹, Emma Speh², Adam T. Eggebrecht², Hamid Dehghani¹; ¹Univ. of Birmingham, UK; ²Washington Univ. in St Louis, USA. A neural network can be used to postprocess and improve the spatial accuracy of DOT reconstruction. In both simulated and experimental data, the method significantly and consistently outperforms the classic smoothing-based postprocessing.

W5B.2 • 16:30

Diffuse Optical Tomography Using Deep Learning to Marginalize Errors due to Inaccurate Baseline Optical Parameters in Brain Imaging, Meghdoot Mozumder¹, Pauliina Hirvi², Ilkka Nissilä², Andreas Hauptmann³, Jorge Ripoll⁴, David E. Singh⁴; ¹*Itä-Suomen Yliopisto, Finland;* ²*Aalto Univ., Finland;* ³*Univ. of Oulu, Finland;* ⁴*Universidad Carlos III de Madrid, Spain.* Diffuse optical tomography uses near-infrared light for 3D brain imaging. We simulated errors due to inaccurate baseline parameters and developed a deep learning technique that mitigated these errors, enhancing contrast and localization of activation changes.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W5B.3 • 16:45

BPU-Net: An Efficient End-to-End Deep-Learning Diffuse Optical Tomography Model for Structured Scan Data, Ben A. Fry¹, Rickson Mesquita¹, Hamid Dehghani¹, Robin B. Dale¹; ¹Univ. of Birmingham, UK. Current DL-DOT architectures do not exploit dataset structures causing learning inefficiencies. This work evaluates network design based on dataset spatial structures; causing a 44% training time reduction, increased performance and reduced data requirements.

W5B.4 • 17:00

Transformer-Encoder for Real-Time DOT Scanning, Robin B. Dale¹, Nicholas Ross², Scott Howard², Thomas D. O'Sullivan², Hamid Dehghani¹; ¹Univ. of Birmingham, UK; ²Univ. of Notre Dame, USA. Deep-Learning based Diffuse Optical Tomography enables real-time clinical breast imaging, but current models are scanning-pathway-specific. Here, a transformer architecture is proposed to encode arbitrary scanning pathways, enabling flexible real-time imaging with a single trained model.

W5B.5 • 17:15

Non-Invasive Intracranial Pressure Estimation From Cerebral Blood Flow Dynamics Using Wavelet-Based Deep Learning, Viacheslav Danilov¹, Monica Torrecilla², Carolina Fajardo², Murad Al-Nusaif^{2,3}, Susanna Tagliabue², Jonas Fischer², Diego Lopez^{3,4}, Marta Peris³, Maria Poca^{3,4}, Juan Sahuquillo^{3,4}, Turgut Durduran^{2,5}, Gemma Piella¹; ¹Department of Engineering, Universitat Pompeu Fabra, Spain; ²Institut de Ciències Fotòniques, Spain; ³Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron Research Inst., Spain; ⁴Department of Neurosurgery, Vall d'Hebron Univ. Hospital, Spain; ⁵Institució Catalana de Recerca i Estudis Avançats, Spain. A wavelet decomposition network estimated intracranial pressure from pulsatile cerebral blood flow in 44 idiopathic normal pressure hydrocephalus patients, with 70% of windows showing less than 6 mmHg error for the 0–15 mmHg range.

W5B.6 • 17:30

Point-of-Care, Continuous Assessment of Multiple Biomarkers Using Long Wavelength Near Infrared Spectroscopy for Dialysis., Shree Krishnamoorthy¹, Walter Messina¹, Cian Kiely², Nicola Rossberg², Andrea Visentin², Ray Burke¹, Stefan Andersson-Engels¹; ¹*Tyndall National Inst., Ireland;* ²*School of Computer Science & IT, Univ. College Cork, Ireland.* Dialysis is a crucial treatment for chronic kidney disease. Long wavelength near-infrared (LWNIR) spectroscopy has potential for continuous, point-of-care monitoring during dialysis. LWNIR spectroscopy with novel calibration using liquid biophantoms is developed here to measure key biomarkers in a microfluidic system simulating dialysis channel.

W5B.7 • 17:45

Machine Learning-Enhanced Random Laser Sensing: Unveiling Scattering Anisotropy for Optical Property Characterization, Dongqin Ni^{1,2}, Florian Klaempfl^{1,2}, Michael Schmidt^{1,2}, Martin Hohmann^{1,2}; ¹*Inst. of Photonic Technologies (LPT) - FAU, Germany;* ²*Erlangen Graduate School in Advanced Optical Technologies (SAOT) - FAU, Germany.* We apply machine learning to enhance diffuse reflectance spectroscopy-random laser sensing, revealing that anisotropy factor g dominates random laser emission in the subdiffusive regime.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 22a

16:00 -- 18:00 W5C • Quantitative Imaging

Presider: Min Wu; Technische Universiteit Eindhoven, Netherlands

W5C.1 • 16:00

A Solid Phantom Recipe to Mimic Optical and Acoustic Properties of Biological

Tissue, Katarzyna I. Komolibus¹, Andrea Doyle³, Dermot Daly³, Aoife M. Ivory⁴, Baptiste Jayet¹, Stefan Andersson-Engels¹, Sanathana Konugolu Venkata Sekar^{1,2}; ¹*Tyndall National Inst., Ireland;* ²*BioPixs Ltd, Ireland;* ³*RCSI, Ireland;* ⁴*St Vincent Private Hospital, Ireland.* A photoacoustic phantom recipe mimicking wide range of optical and acoustic properties observed in human tissue is presented. Phantoms are characterized over broadband range of optical wavelengths and acoustic frequencies.

W5C.2 • 16:15

Does Medium Stiffness Affect Photoacoustic Image Intensity? a Phantom Study, Elahe Rastegar Pashaki¹, Ashkan Ghanbarzadeh Dagheyan¹; ¹Univ. of Twente, Netherlands. This study examines the effect of medium stiffness on photoacoustic (PA) image intensity using agar phantoms. Results show increased PA image intensity when going from 1% to 2% agar, but reduced intensity at a higher concentration.

W5C.3 • 16:30

Realistic PA/US Simulations of Articular Cartilage, Roby Weeteling¹, Yuexin Qi¹, Corrinus C. van Donkelaar¹, Rob P. Janssen^{1,2}, Keita Ito¹, Richard G. Lopata¹, Min Wu¹; ¹Biomedical Engineering, Eindhoven Univ. of Technology, Netherlands; ²Orthopaedic Surgery & Trauma, Maxima Medical Center, Netherlands. A simulation method was developed to model PA/US image acquisition of cartilage, simulating both optical fluence and acoustic wave propagation. Osteoarthritis-related microstructure was incorporated, making it a promising tool for osteoarthritis research and diagnosis.

W5C.4 • 16:45

Digital Superphantoms for in Silico Thyroid Nodule Photoacoustics Imaging, Max Rietberg¹, Bram de Wilde¹, Jelmer Wolterink¹, Srirang Manohar¹; ¹Univ. of Twente,

Netherlands. Thyroid nodules occur in almost two-thirds of the population. Diagnostic imaging with ultrasound could benefit from the addition of photoacoustics. In silico testing and optimisation of this combination is possible with superphantoms.

W5C.5 • 17:00

Opto-Mechanical Characterization of the Intervertebral Disc Using Photoacoustic

Imaging, Antoine Capart¹, Roman Allais², Julien Wojak¹, Olivier Boiron², Anabela Da Silva¹; ¹Aix Marseille Univ, CNRS, Centrale Méditerranée, Institut Fresnel, France; ²Aix Marseille Univ, CNRS, Centrale Méditerranée, IRPHE, France. This study introduces quantitative photoacoustic imaging to assess intervertebral disc degeneration, characterized by dehydration and associated degenerative diseases, offering a novel approach to evaluate disc health and advance diagnostic techniques.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W5C.6 • 17:15

Quantitative Photoacoustic Imaging of Simulated Carotid Plaque, Mervenur Akkus¹, Anjali Thomas¹, Sowmiya Chandramoorthi², Gijs van Soest¹, Francis Kalloor Joseph¹; ¹*Erasmus MC, Netherlands;* ²*Verasonics Inc, USA.* We propose a method using arterial blood as a fluence marker for quantitative photoacoustic imaging of carotid plaques. We demonstrate this approach with simulated carotid plaques and validate the method through experiments.

W5C.7 • 17:30

Acoustic Background Noise in Photoacoustic Tomography, Dylan M. Marques¹, David Martin-Sanchez^{2,3}, Olumide Ogunlade^{1,3}, Edward Zhang³, Paul Beard³, James Guggenheim^{1,3}; ¹Univ. of Birmingham, UK; ²CSIC, Spain; ³Univ. College London, UK. To characterize the limits of detection sensitivity in photoacoustic imaging, we applied ultrasensitive sensors to measure the "acoustic background" – random pressures arising from thermal vibrations. The results could help guide the design of photoacoustic systems.

W5C.8 • 17:45

Towards Quantitative Photoacoustic Imaging Assisted by Ultrasound Power

Doppler, Ivana Falco¹, Charlotte Constans¹, Emmanuel Bossy¹, Bastien Arnal¹; ¹Univ. Grenoble Alpes, CNRS, LiPhy, France. Quantitative photoacoustic imaging involves an optical inverse problem asking for priors. We propose to add Ultrasound Power Doppler information to: 1) measure the fluence in blood vessels, 2) solve the inverse problem for (μ a, μ 's).

Room: ICM Room 22b 16:00 -- 18:00 W5D • New Technology II

W5D.1 • 16:00 (Invited)

Phase-Code Mode-Locked Laser at 1060 nm for Circular-Ranging Optical Coherence Tomography, Danielle J. Harper^{1,2}, Hyun-Sang Park^{2,3}, Tae Shik Kim^{2,3}, Yong-Chul Yoon^{2,3}, Jongyoon Joo^{2,3}, Norman Lippok^{2,3}, Benjamin J. Vakoc^{2,3}; ¹Univ. of Cambridge, UK; ²Wellman *Center for Photomedicine, Massachusetts General Hospital, USA;* ³*Harvard Medical School, USA.* Phase-code mode-locking can be used to create stepped frequency comb sources for optical coherence tomography, but has only been demonstrated at telecommunication wavelengths. We have constructed a phase-code mode-locked laser with a retinal-imagingcompatible 1060 nm central wavelength.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W5D.2 • 16:30

Stretched-Pulse Active Mode-Locking Comb Swept Laser Without Fabry-Pérot Etalon for Subsampled Optical Coherence Tomography, Seongjin Bak¹, Gyeong Hun Kim², Hwidon Lee¹, Chang-Seok Kim¹; ¹*Pusan National Univ., Korea (the Republic of);* ²*Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, USA.* We present a stretched-pulse active mode-locking comb-swept laser without Fabry-Pérot etalon for subsampled OCT. This etalon-free design improves spectral stability, reduces acquisition burden, and enhances high-speed imaging, advancing OCT applications in biomedical and industrial fields.

W5D.3 • 16:45

High-Speed, Long-Range SS-OCT Imaging Based on HCG-VCSEL and Real-Time Calibration Framework, Chien-Hua Peng¹, Kuang-Lei Haung¹, Jian-Zhi Wang¹, Jyh-Tsung Hsieh², Hsiang-Chieh Lee¹; ¹National Taiwan Univ., Taiwan; ²Bandwith10 Ltd., USA. In this study, we have developed a SS-OCT system using an HCG-VCSEL wavelength-swept laser with a calibration interferometer for real-time k-calibration, achieving real-time, long-range imaging of a full eye model and a stepped 3D-printed model at an A-scan rate of 30 kHz.

W5D.4 • 17:00 (Invited)

Megahertz FDML Laser With on-the-fly Adjustable Sweep Rate Between 835 kHz and 13.4 MHz, Simon Lotz¹, Wolfgang Draxinger¹, Anneli Dick¹, Robert Huber^{1,2}; ¹Universität zu Lübeck, Germany; ²Medizinisches Laserzentrum Lübeck GmbH, Germany. We present a Megahertz FDML laser which can be automatically, and on-the-fly switched to speed values between 830 kHz and 13.4 MHz using optical switches in the buffer stage.

W5D.5 • 17:30

Lifting Constraints on Multi-kHz Raster-Line Scanning Frequency Matching in Multi-MHz Swept-Source OCT Imaging Systems, Wolfgang Draxinger^{1,2}, Simon Lotz¹, Allegra Behr¹, Madita Göb¹, Robert Huber¹; ¹Univ. of Lübeck, Germany; ²Medical Laser Center Lübeck, Germany. The established synchronization scheme of *swept source optical coherence tomography (SS-OCT)* calls for the raster-line frequency to be a remainder-less divider of the sweep frequency. Two methods are presented that increase flexibility in scanner operation.

W5D.6 • 17:45

Dual Laser Full-Field Fourier-Domain Optical Coherence Tomography for Improving Axial Resolution, Sarvesh A. Thakur¹, Nelson P. Klooster¹, Dierck Hillmann¹; ¹*Vrije Universiteit Amsterdam, Netherlands.* We demonstrate a high (axial) resolution Full-Field Fourier-Domain optical coherence tomography (FF-FD-OCT) system by computationally stitching the OCT spectra from two independently sweeping lasers. The results are validated using different samples.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 5

16:00 -- 18:00

W5A • Pre-Clinical and Clinical Studies Oncology and More Presider: Paola Taroni: Politecnico di Milano, Italy

W5A.1 • 16:00

Statistical Analysis of Infrared Spectroscopy for Diagnosing Inflammatory Bowel Disease-Associated Cancer, Eric Kumi-Barimah¹, Raneen Toman¹, Sharib Ali¹, Animesh Jha¹, Venkataraman Subaraman¹; ¹Univ. of Leeds,, UK. We report mid-IR spectroscopic analysis of colorectal tissues collected from IBD patients. PCA and HCA models were adopted to differentiate between the IBD patients of low/high-risk and those with CRC by providing a visual graphical distinction.

W5A.2 • 16:15

Real-Time Evaluation of Polyps During Colonoscopy Using Fibre-Optic Microscopy with Ultraviolet Surface Excitation, Alexander Yong¹, Nazihah Husna Abdul Aziz¹, Ko Hui Tan¹, Gaurav Manek², Rachel Rui Yi Sim², Rachel Loi³, Gwyneth Shook Ting Soon³, Dedrick Kok Hong Chan³, Kaicheng Liang¹; ¹Nanyang Technological Univ., USA; ²Agency for Science, Technology and Research, Singapore; ³National Univ. Hospital, Singapore. The evaluation of excised samples during endoscopy could inform intra-operative decisions and reduce pathology workload. Fibre-optic microscopy with ultraviolet surface excitation was deployed in a colorectal surgery department for polyp imaging, with correlation to histopathology.

W5A.3 • 16:30

Autofluorescence Lifetime Imaging Probe for Optical Diagnostics of Liver Tumors, Dafne Suraci¹, Luca Tirloni², Chiara Gatto², Serena Pillozzi³, Lorenzo Antonuzzo^{4,2}, Antonio Taddei^{2,4}, Riccardo Cicchi^{1,5}; ¹CNR INO, Italy; ²Hepatobiliopancreatic Surgery, Careggi Hospital, Italy; ³Experimental and Clinical Biomedical Sciences, Univ. of Florence, Italy; ⁴Experimental Clinical Medicine, Univ. of Florence, Italy; ⁵European Laboratory for Non-linear Spectroscopy (LENS), Italy. We present a fiber-based autofluorescence lifetime imaging probe for hepatic cancer diagnostics. Our approach enables real-time tumor margin delineation and differentiation between different tumors, providing metabolic insights that enhance oncological diagnostics and surgical precision.

W5A.4 • 16:45

Polarization-Sensitive Imaging of Uterine Cervical Structures, Jessica C. Ramella-Roman¹, JunZhu Pei¹, Tananant Boonya-Ananta¹, Ajmal Ajmal¹, Amanda Sanchez¹, Andres Rodriguez¹; ¹*Florida International Univ., USA.* In this study, we utilize multimodal and polarization-sensitive imaging approaches to obtain a comprehensive perspective on uterine cervix remodeling. This contributes to improved assessments of Spontaneous Preterm Birth risk and its underlying mechanisms.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

W5A.5 • 17:00

Noninvasive in-Vivo Bone Characterisation, Hui Ma^{1,3}, Sanathana Konugolu Venkata Sekar^{1,2}, Pranav Lanka¹, Suraj Kumar Kothuri^{1,3}, Stefan Andersson-Engels^{1,4}, Rekha Gautam¹; ¹*Tyndall National Inst., Ireland;* ²*BioPixS Ltd, Ireland;* ³*Engineering Science, Univ. College Cork, Ireland;* ⁴*Physics, Univ. College Cork, Ireland.* We optimised spatial offset in a dual-wavelength Raman setup to assess bone quality, extracting deep-tissue chemical information beyond conventional methods. Validation with phantoms and in vivo measurements confirmed its effectiveness.

W5A.6 • 17:15

Transcutaneous Fluorescence Spectroscopy for Non-Invasive Assessment of Small Bowel Permeability in Patients with Irritable Bowel Syndrome Undergoing Low FODMAP Diet, Qian Chen¹, Nilanjan Mandal¹, Pratik Ramkumar², Yabiz Sardar², Karl K. Yong³, James Alexander³, Sophie Stevens³, Nisha Patel³, Hutan Ashrafian², Ara Darzi², Alexander J. Thompson¹; ¹The Hamlyn Centre, imperial College Lond, UK; ²Imperial College London, UK; ³Imperial College Healthcare NHS Trust, UK. Transcutaneous fluorescence spectroscopy was used to assess intestinal barrier function non-invasively in irritable bowel syndrome (IBS), demonstrating effective discrimination between IBS patients and healthy volunteers and showing changes in IBS on low FODMAP diet.

W5A.7 • 17:30

Multispectral Optical Sensor for Psychological Stress Detection in Skin, Victoria Barygina¹, Enrico Baria¹, Elena Cravero^{2,3}, Francesco Goretti³, Francesco S. Pavone^{1,3}; ¹Univ. of Florence, Italy; ²Campus Bio Medico Univ. of Rome, Italy; ³LENS - European Laboratory for Non-Linear Spectroscopy, Italy. We aim to individuate psychological stress-related skin response with a high-throughput multimodal combination of optical techniques. A multimodal approach achieved 100% accuracy in classifying "no-stress" and "stress" conditions.

W5A.8 • 17:45

Dynamic Properties of Retinal Vessels' Morphology Observed With High-Resolution Scanning Laser Ophthalmoscope, Julia A. Kochanska¹, Maciej Nowakowski², Patrycjusz Stremplewski¹, Edyta Dabrowska^{3,4}, Carlos López-Mariscal¹, Marcin Sylwestrzak¹, Krzysztof Dalasinski², Jacek Wolf^{3,4}, Marcin Hellmann^{3,4}, Krzysztof Narkiewicz^{3,4}, Anna Szkulmowska², Maciej Szkulmowski¹; ¹Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus Univ. in Torun, Poland; ²Inoko Vision Ltd. L.P., Poland; ³Faculty of Medicine, Medical Univ. of Gdansk, Poland; ⁴Center for Translational Medicine, Medical Univ. of Gdansk, Poland. We present an advanced scanning laser ophthalmoscope for imaging retinal microcirculation. By tracking vascular parameters over time, we extract changing pulse frequencies, providing insight into vascular dynamics relevant for cardiovascular and neurovascular research.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Thursday, 26 June

Room: ICM Room 11 08:30 -- 10:00 Th1B • Advances in Instrumentation and Technology IV Presider: Dirk Grosenick; Physikalisch Technische Bundesanstalt, Germany

Th1B.1 • 08:30

A Miniature Sensor Board for Smarter Near-Infrared Diffuse Optical Spectroscopy

Probes, M. Atif Yaqub¹, Marta Zanoletti¹, Lorenzo Cortese¹, Daniel Senciales¹, Ameer Ghouse¹, Jonas Fischer¹, Turgut Durduran^{1,2}; ¹*ICFO -Institut de Ciencies Fotoniques, Spain;* ²*Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain.* A miniaturized sensor board, designed to enhance data quality monitoring, probe placement standardization and laser safety for near-infrared diffuse optical spectroscopy probes. It combines touch, force, light, and motion sensors, providing practical real-time monitoring of data-quality, rapid response for laser safety and probe placement guidance.

Th1B.2 • 08:45

Optical and Ultrasound Measurements for Artery Diameter Extraction for Blood Pressure Monitoring, Milena Sofra¹, Augustin Vernay¹, Elodie Cao¹, Laurent Gerfault¹, Rémi Gerbelot¹, Mathieu Perriollat¹, Guillaume Blanquer¹, Pierre Blandin¹; ¹*CEA-LETI, France.* We examine the correlation between optical and ultrasound synchronized signals. Measurements are conducted on a custom-made experimental bench, on a representative medium. We demonstrate that the optical signals contain the information on the artery diameter.

Th1B.3 • 09:00

Simulation of an Optical Microneedle Interface for Arterial Dynamics Measurement via Photoplethysmography, Guillaume Blanquer¹, Sacha Juillard¹, Mathieu Perriollat¹, Marianne Consonni¹, Isabelle Texier¹, Anne Planat-Chretien¹; ¹*CEA - LETI, France.* Optical Microneedle Interface enhances both the injection of light into biological tissues and the sensitivity of detecting targeted physiological parameters. We present simulation that highlight the impact of a microneedle interface on improving the monitoring of arterial dynamics.

Th1B.4 • 09:15

Determination of Depth-Dependent Dynamic Properties of Turbid Media Using Frequency-Modulated Scattering Holography, Binbin Zhang¹, Sophinese Iskander-Rizk¹, Nandini Bhattacharya¹; ¹*TU Delft, Netherlands.* We propose to use a frequency-modulated light source and a high-speed camera to simultaneously measure the optical and depth-dependent dynamic properties of turbid media. This approach mitigates bandwidth limitations encountered by previously demonstrated interferometric near-infrared spectroscopy techniques.

Th1B.5 • 09:30

Exploration of Polarization Speckle Metrics to Characterize Scattering Properties of Turbid Media, Carla Kulcsar², Daniel Louie¹, Alex Vitkin^{1,2}; ¹UHN, Canada; ²Medical Biophysics, Univ. of Toronto, Canada. This study leverages the statistical properties of polarization speckles to characterize turbid optical phantoms that emulate cancer-related optical changes. A new framework of custom metrics is explored.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th1B.6 • 09:45

Room-Light Operation of a Three-Wavelength Spatial Frequency Domain Imaging System Using Pulsed Illumination and an 8-Tap CMOS Image Sensor, Yu Feng¹, Chen Cao¹, Keita Yasutomi¹, Shoji Kawahito¹, Gordon T. Kennedy², Anthony Durkin², Keiichiro Kagawa¹; ¹Shizuoka Univ., Japan; ²Univ. of California, Irvine, USA. We demonstrate room-light operation of a three-wavelength spatial frequency domain imaging system using an 8-tap CMOS image sensor synchronized with high-peak-power, low-duty-cycle pulsed LEDs, achieving ambient light suppression at 282 lux and motion artifact suppression.

Room: ICM Room 5 08:30 -- 10:00 Th1A • Novel Light Sources and Beams Presider: Mads Bergholt; King's College London, UK

Th1A.1 • 08:30

Polarization-Resolved OCT: Enhancing Retinal Band Interpretation and Functional Optoretinography, Xincheng Yao¹, Shaiban Ahmed¹, Taeyoon Son¹; ¹Univ. of Illinois at *Chicago, USA.* Polarization-resolved optical coherence tomography differentiates ballistically reflected and multiply scattered photons, improving retinal layer interpretation and functional optoretinography. Parallel-polarization OCT reveals light-induced photoreceptor outer segment shrinkage; cross-polarization OCT highlights dynamic scattering properties.

Th1A.2 • 08:45

Towards Detection of Analytes in Biotissues Using Twisted Light with Orbital Angular Momentum, Alexander Bykov¹, Anton Sdobnov¹, Ivan Lopushenko¹, Igor Meglinski²; ¹Univ. of *Oulu, Finland;* ²Aston Univ., UK. This study explores OAM beams for analyte sensing in biological tissues. Demonstrating robust phase memory, our approach enables non-invasive glucose detection in scattering media, offering a highly sensitive optical technique for biomedical diagnostics.

Th1A.3 • 09:00

Angular Light Scattering for Quantification of the Fat Concentration in Human

Milk, Wietske Verveld¹, Johanna R. de Wolf¹, Wilma Petersen¹, Nienke Bosschaart¹; ¹Biomedical Photonic Imaging, Univ. of Twente, Netherlands. Human milk fat measurements are crucial for lactation care and research. We present the potential of angular light scattering for fat content quantification, based on goniometric measurements and fat globule sizes of fifty milk samples.

Th1A.4 • 09:15

Orbital Angular Momentum Light in Complex Media: Propagation, Preservation, and Applications, Fatima Khanom¹, Nawal Mohamed¹, Ivan Lopushenko², Anton Sdobnov², Alexander Doronin³, Alexander Bykov², Edik Rafailov¹, Igor Meglinski¹; ¹Aston Univ., UK; ²Univ. of Oulu, Finland; ³Victoria Univ. of Wellington, New Zealand. We investigate twisted light propagation in turbid media, demonstrating phase memory retention despite microscopic scattering. Simulations and experiments reveal high refractive index sensitivity and a novel phase preservation framework, benefiting biomedical imaging, secure optics, and precision applications.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th1A.5 • 09:30

Quartz Tuning Fork as Photodetector for Benzene Monitoring Beyond 12 μm, Lavinia A. Mongelli¹, Andrea Zifarelli¹, Kumar Kinjalk¹, Alexei Baranov¹, Oijie Wang¹, Pietro Patimisco¹, Vincenzo Spagnolo¹, Angelo Sampaolo¹; ¹*PolySense, Italy.* A novel sensor for detecting BTEX compounds was developed using light-induced thermoelastic absorption spectroscopy (LITES). The system employed an InAs/AISb quantum cascade laser (14.85 μm) and a custom quartz tuning fork photodetector, with benzene selected as case study.

Th1A.6 • 09:45

Orbital Angular Momentum Beams in Turbid Media for High-Precision Diagnostics, Nawal Mohamed¹, Fatima Khanom¹, Diana Galiakhmetova¹, Anton Sdobnov², Ivan Lopushenko², Alexander Bykov², Edik Rafailov², Igor Meglinski¹; ¹Aston Univ., UK; ²Univ. of Oulu, Finland. We investigate propagation and phase stability of Orbital Angular Momentum beams in turbid tissue-like scattering medium, demonstrating its robustness for high-precision diagnosis of tissue samples, with potential for refractive index sensing in complex biological environments.

Room: ICM Room 11

10:30 -- 12:00

Th2B • Theory, Algorithms, and Modeling III Presider: Giulia Maffeis; Politecnico di Milano, Italy

Th2B.1 • 10:30

A new Method to Optimize Measurement Conditions for Fluorescence Spectroscopy Systems for Intraoperative Glioma Delineation, Arthur Gautheron^{1,2}, Raphaël Clerc³, Charly Caredda¹, Mathieu Hébert³, Bruno Montcel¹; ¹CREATIS, France; ²CPE, France; ³Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School, Lab. Hubert Curien UMR 5516, France. 5-ALA-induced PpIX fluorescence has been proposed to improve the identification of benign from malignant brain tumors during surgery. Based on simulation, this work helps at determining the best operating measurement conditions for estimating PpIX concentration.

Th2B.2 • 10:45

Simulated Near Infrared Database for Fluorescence Diffuse Optical Tomography, Martin Rodriguez-Vega¹, Pascal Nguyen^{1,2}, Julien Wojak¹, Maxime Henry³, Véronique Josserand³, Anabela Da Silva¹; ¹*Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, France;* ²*Kaer Labs, France;* ³*Inst. for Advanced Biosciences, Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, France.* This paper presents a methodology for constructing a simulated fluorescence tomography database. It details dataset generation, geometry, optical properties, solvers and data processing. The database ensures reproducibility and supports AI applications in biomedical imaging.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th2B.3 • 11:00

Symbolic Monte Carlo for Quantifying Fluorescent Biomarkers in Neurosurgical

Intraoperative Imaging, Luis A. Martinez Cesena^{1,2}, Arthur Gautheron^{1,3}, Maxime Roger², Mathieu Galtier², Laurent Mahieu-Williame¹, Agnes Delmas², Bruno Montcel¹; ¹*CREATIS*, *France;* ²*INSA Lyon, France;* ³*Universite Jean Monnet Saint-Etienne, France.* Symbolic Monte Carlo methods are employed to quantify the fluorescent biomarker Protoporphyrin IX, utilized in neuro-oncology. The outcome matches the experimental measurements setting SMC simulations as a promising tool for intraoperative imaging neurosurgery.

Th2B.4 • 11:15

Sparse-View Cherenkov Imaging Reconstruction Algorithm via Markov Projection

Dynamic Prior, Hu Zhang^{1,2}, Ting Hu², Zhonghua Sun², Zhe Li², Kebin Jia², Jinchao Feng²; ¹Univ. of Birmingham, UK; ²Beijing Univ. of Technology, China. A sparse-view Cherenkov imaging reconstruction method is presented using Markov projection dynamic prior. Experimental results show that this proposed method yields the highest Peak Signal-to-Noise Ratio (PSNR) values of Cherenkov images (23.91 dB and 22.40 dB).

Th2B.5 • 11:30

Time Domain Raman Forward Solver in a two-Layer Diffusive Medium, Andrea Farina², Naseer Kammalamuriyil¹, Alessandro Bossi³, Valerio Gandolfi³, Ilaria Bargigia³, Antonio Pifferi³, Stefan Susnjar⁴, Federico Tommasi¹, Fabrizio Martelli¹; ¹Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, Italy; ²Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ³Dipartimento di Fisica, Politecnico di Milano, Italy; ⁴SpectraCure AB, Sweden. An analytical model to describe the time domain reflectance Raman signal in a two-layer diffusive medium was developed. The accuracy of the model is verified by comparison with the results of Monte Carlo simulations.

Th2B.6 • 11:45

Time-Domain Diffuse Optical Tomography with Pattern Illumination and Detection: Modeling and Simulation, Jarjish Rahaman¹, Meghdoot Mozumder¹, Giovanna T. Carneiro², Andrea Farina², Tanja Tarvainen¹; ¹Univ. of Eastern Finland, Finland; ²Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy. Use of structured illumination and detection in time-domain diffuse optical tomography was studied using simulations. Absorption and scattering distributions were reconstructed in frequency domain utilising truncated Fourier series approximation and different orders of spatial patterns.

Room: ICM Room 22a 10:30 -- 11:15 Th2C • Joint Postdeadline Paper Session

Th2C.1 • 10:30 Postdeadline Submission

High-Resolution Dynamic Full-Field Optical Coherence Microscopy for Deep Tissue

Cellular Imaging, Erikas Tarvydas¹, Austeja Treciokaite¹, Urte Neniskyte², Egidijus Auksorius¹; ¹*Ctr. for Physical Sciences & Technology, Lithuania;* ²*Life Sciences Center, Vilnius Univ., Lithuania.* We demonstrate high-resolution (250 nm) and deep (>100 µm) imaging of various ex vivo mouse tissues using dynamic full-field optical coherence microscopy (FF-OCM), enabled by 100x objectives and a high-brightness white light source.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th2C.2 • 10:45 Postdeadline Submission

Broadband Micro-Rheology of a Single Chromosome – Exploring the Role of the Chromosome Periphery, Tania Mendonca¹, Roman Urban², Kellie Lucken¹, George Coney¹, Neil Kad², Manlio Tassieri³, Amanda J. Wright¹, Daniel Booth¹; ¹Univ. of Nottingham, UK; ²Univ. of Kent, UK; ³Univ. of Glasgow, UK. Using two optical traps we explore the biophysical properties of individual chromosomes, studying the role of the chromosome periphery, and present a novel analysis method to explore mechanical properties over 7 decades of frequency.

Th2C.3 • 11:00 Postdeadline Submission

Setting the Stage for Intraoperative Histological Quality Guidance in Autologous fat Treatments via Computed Optoacoustic Microscopy, Constantin G. Berger^{1,2}, Myeongseop Kim^{1,2}, Lukas Scheel-Platz^{1,2}, Andreas Eigenberger³, Lukas Prantl³, Panhang Liu^{1,2}, Vipul Gujrati^{1,2}, Vasilis Ntziachristos^{1,2}, Dominik Jüstel^{1,2}, Miguel A. Pleitez^{1,2}; ¹Chair of Biological Imaging, Central Inst. for Translational Cancer Research (TranslaTUM), School of Medicine and Health & School of Computation, Information and Technology, Technical Univ. of Munich, Germany; ²Inst. of Biological and Medical Imaging, Bioengineering Center, Helmholtz Munich, Germany; ³Department of Plastic, Hand and Reconstructive Surgery, Univ. Medical Center Regensburg, Germany. Autologous fat transfer has enabled substantial advances in plastic and reconstructive surgery, while clinical practice is currently lacking standardization tools. We developed computational optoacoustic microscopy to facilitate intraoperative quality guidance for mechanically enhanced fat grafts.

Room: ICM Room 5

10:30 -- 12:00 Th2A • Hyperspectral Imaging Presider: Yijing Xie; King's College London, UK

Th2A.1 • 10:30

A Hyperspectral Imaging System for Meningioma Grade Discrimination, Pietro Ricci^{1,2}, Camilla Bonaudo¹, Ivan Ezhov³, Anam Toaha^{1,2}, Dorotea Nardini^{1,2}, Louis Chessel⁴, Luca Giannoni⁵, Ilias Tachtsidis⁵, Francesco S. Pavone^{1,2}; ¹Univ. of Florence, Italy; ²European Laboratory for Non-Linear Spectroscopy, Italy; ³Technischen Universitst Munchen, Germany; ⁴Polytech Lyon, France; ⁵Univ. College London, UK. Histopathology is the gold standard for meningioma grading but is limited by processing time and subjectivity. We present a hyperspectral imaging system for real-time, label-free analysis, demonstrating the potential to enhance efficiency in meningioma grading.

Th2A.2 • 10:45

Investigation of Melanin Content Using Hyperspectral Imaging, Maximilian Aumiller^{1,2}, Prishita Mirchandani¹, Ester Pachyn¹, Ronald Sroka^{1,2}, Adrian Rühm^{1,2}; ¹Laser-Forschungslabor, LIFE Center, LMU Hospital, Germany; ²Department of Urology, LMU Hospital, Germany. Hyperspectral imaging (HSI) data from optical tissue phantoms and human volunteers were analyzed by means of an analytical approach, to enable the evaluation of melanin content in human skin.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th2A.3 • 11:00

Properties of Iso-Points for Hyperspectral Depth Reconstruction, Dongqin Ni^{1,2}, Franziska Wandslebe¹, Farshad Mohamadi¹, Martin Hohmann^{1,2}; ¹*Inst. of Photonics Technologies, Germany;* ²*Erlangen Graduate School in Advanced Optical Technologies, Germany.* An isopoint in hyperspectral imaging is a wavelength where absorption and scattering effects cancel, yielding depth-invariant reflectance. Recent findings reveal it is a narrow spectral range where spectra intersect, influenced by absorption and scattering coefficients.

Th2A.4 • 11:15

Classification of Atopic Dermatitis's Erythema Severity Based on Hyperspectral Imaging and Three-Dimensional Convolutional Neural Network, Seula Kye¹, Yoo Sang Baek², Onseok Lee¹; ¹Soonchunhyang Univ., Korea (the Republic of); ²Dermatology, Guro Hospital, Korea Univ., Korea (the Republic of). We classified the erythema severity of atopic dermatitis hyperspectral imaging (HSI) based on a three-dimensional convolutional neural network (3D-CNN) model, achieving 95% classification performance. The combination of HSI and 3D-CNN will help diagnose erythema.

Th2A.5 • 11:30

Novel Integrated Hyperspectral Device for Widefield Quantitative Fluorescence Imaging of Human Glioma, Silvère Ségaud¹, Matthew Elliot^{1,2}, Charles Budd¹, Tom Vercauteren¹, Jonathan Shapey^{1,2}, Yijing Xie¹; ¹*Kings College London, UK*; ²*Kings College Hospital, UK*. We present the characterization of a snapshot hyperspectral camera and its integration into a commercial neurosurgical microscope for quantitative fluorescence imaging of protoporphyrin IX. The device is then showcased for human glioma surgery.

Th2A.6 • 11:45

Potential of Hyperspectral Imaging in Forensic Application, Ina Stadler¹, Maximilian Aumiller¹, Daniel Happach¹, Ronald Sroka¹, Adrian Rühm¹; ¹Ludwig-Maximillians-Universität Munchen, Germany. A medical certified hyperspectral imaging system (HSI) was used to distinguish blood strains from other reddish agents. Furthermore, time dependent changes could be derived from spectral changes showing the potential of this technique for contactless trace recording in criminal cases.

Room: ICM Room 11 14:00 -- 15:30 Th3B • Theory, Algorithms, and Modeling IV Presider: Andrea Farina; Consiglio Nazionale delle Ricerche, Italy

Th3B.1 • 14:00

Heuristic Model for Photon Propagation in Two-Layer Turbid Media, Fabio Negretti¹, Caterina Amendola¹, Giulia Maffeis¹, Andrea Farina², Fabrizio Martelli³, Lorenzo Spinelli²; ¹Dipartimento di Fisica, Politecnico di Milano, Italy; ²Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ³Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Italy. We propose a heuristic model for light propagation in two-layer turbid media, that accurately reproduces photon Distributions of Time-Of-Flight, while being faster than a full Monte Carlo approach, and is easily scalable to multi-layer domains.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th3B.2 • 14:15

Real-Time Multispectral Diffuse Optical Tomography for Hemodynamic Imaging Using the SENSOR Algorithm, Lara Pinar¹, Stephen Kim¹, Moegammad A. Bardien¹, Andreas H. Hielscher¹; ¹New York Univ., USA. We present a real-time image reconstruction method for multispectral Diffuse Optical Tomography using the SENSOR algorithm, enabling 3D hemoglobin visualization and quantitative inflammation assessment in Systemic Lupus Erythematosus patients with a flexible finger patching system.

Th3B.3 • 14:30

Algorithm for Deriving Absolute Blood Flow from Reduced Speckle Contrast Data, Lisa C. Kobayashi Frisk¹, Veronika Parfentyeva¹, Manish Verma¹, Turgut Durduran^{1,2}; ¹*ICFO - Institut de Ciencies Fotoniques, Spain;* ²*Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain.* Deriving absolute blood flow from speckle contrast data requires measurements at several exposure times. To simplify this derivation, an algorithm requiring only one exposure time has been developed and evaluated.

Th3B.4 • 14:45

Optical Properties of Two-Layered Turbid Media Obtained via a Homogenous Model Using an Analytical Solution to the Radiative Transfer Equation, Zachary Jones¹, Dominik Reitzle¹, Florian Foschum¹, Alwin Kienle¹; ¹*ILM Ulm, Germany.* We quantify μ_{a} - μ_{s} ' cross-talk in a series of *ex-vivo* porcine case studies to demonstrate the risks in fitting two-layer spatiallyresolved reflectance (SRR) measurements with a single-layer model using solutions to the radiative transfer equation (RTE).

Th3B.5 • 15:00

Model Development for (Imaging) Single Fiber Reflectance Spectroscopy, Robin van Zutphen¹, Xavier Attendu¹, Ton van Leeuwen¹; ¹Amsterdam UMC, Netherlands. We present and validate an efficient Monte Carlo pipeline for reflectance computations in overlapping source-detector geometries, using it to develop models for (imaging) spectroscopy through a single fiber and assess sensitivity limits for clinical implementation.

Th3B.6 • 15:15

Numerical Study on Time-Domain Functional Near-Infrared Optical Tomography with Regularization Minimizing Entropy, Shinpei Okawa¹, Qaisar Shahzad¹, Yoko Hoshi¹; ¹*Hamamatsu Univ. School of Medicine, Japan.* The regularization method minimizing the entropy of the reconstructed image was tested in a numerical simulation of near-infrared optical tomography for functional brain imaging to improve the localization and quantification of the image.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Room: ICM Room 5 14:00 -- 15:30 Th3A • Diagnosis Spectroscopy and More Presider: Igor Meglinski; Aston Univ., UK

Th3A.1 • 14:00

Enhancing Widefield Mid-Infrared Photothermal Microscopy with Fluorescence Detection for Improved Contrast and Cellular Imaging, Subham Adak^{2,1}, Anooj Thayyil Raveendran², Samir El-Mashtoly², Jürgen Popp^{2,1}, Christoph Krafft²; ¹*Friedrich-Schiller-Universität Jena, Germany;* ²*Leibniz-Institut für Photonische Technologien e.V., Germany.* Fluorescenceenhanced widefield mid-infrared photothermal microscopy improves contrast and sensitivity using temperature-dependent fluorescence emission. It enables targeted infrared spectroscopy, reduces photobleaching, and allows rapid, high-throughput cellular imaging, advancing mid-IR photothermal microscopy for biomedical applications.

Th3A.2 • 14:15

Ultrahigh-Speed Digital Holography for Quantitative Doppler Imaging of the Human Retina, Zacharie Auray¹, Yann Fischer¹, Olivier Martinache¹, Michael Atlan¹; ¹*ESPCI*, *France.* High-speed digital holography reveals local blood flow contrasts in the eye fundus through deterministic signal analysis, leveraging a forward scattering model of dynamically diffused light. This approach enables the estimation of absolute blood flow in primary in-plane retinal arteries.

Th3A.3 • 14:30

Rapid Detection of Bacterial Infections via Infrared Spectroscopy, Kiran S. Maiti¹, Susmita Roy⁴, Christian Zenner², Lindsay J Hall⁵, Ronald Sroka³; ¹*TUM School of Natural Science, Germany;* ²*TUM School of Life Science, Germany;* ³*Laser-Forschungslabor, LIFE-Center, LMU Univ. Hospital, Germany;* ⁴*Technical Univ. of Munich, School of Medicine and Health, Department of Clinical Medicine, Klinikum rechts der Isar, Germany;* ⁵*Univ. of Birmingham, Inst. of Microbiology and Infection, UK.* Bacterial infections pose a significant global health risk. Timely and accurate identification of bacterial pathogens is essential for effective infection control. Infrared spectroscopy-based metabolic analysis offers rapid, precise, and non-invasive approach to detecting bacterial infections.

Th3A.4 • 14:45

Sub-Picosecond Laser Ablation and Plume Mass-Spectrometry for the Precision Resection and Diagnosis of Soft Biological Tissue., Timothy Frazer¹, Rainer J. Beck¹, Ioannis Bitharas¹, Daniel Simon², Tatiana Malikova¹, Duncan Roberts², Andrew Moore¹, Lauren Ford², Zoltan Takats², Jonathan D. Shephard¹; ¹*Heriot-Watt Univ.*, *UK*; ²*Imperial College London, UK*. Mass-spectrometry of biological tissue using sub-picosecond laser ablation is investigated experimentally. High relative abundances, including peaks at characteristic m/z, are ob-served across a range of laser parameters. Neuromorphic imaging is explored as a secondary diagnostic.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th3A.5 • 15:00

Digital Holographic Tomography for Rapid, Label-Free Detection of Virus-Induced

Cytopathic Effects, Dominika Skrzela¹, Agata Kublicka², Anna Matczuk², Igor Buzalewicz¹; ¹Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw Univ. of Science and Technology, Poland; ²Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw Univ. of Environmental and Life Sciences, Poland. This study investigates the use of digital holotomography (DHT) for early detection of virus-induced cytopathic effects (CPE). DHT enables rapid, non-destructive, quantitative phenotyping, offering time reduction of detection of viral infection compared to other methods.

Room: ICM Room 11 16:30 -- 18:00 Th4B • Super-Resolved Optical Imaging Presider: Sebastian Karpf; BMO, Univ. of Luebeck, Germany

Th4B.1 • 16:30

Stochastic SIM: A Scan-Less Super Resolution Retinal Imaging, Marco Leonetti^{2,1}, Denzel Fusco¹, Ylenia Gigante¹, Lorenza Mautone¹, Silvia Di Angelantonio¹, Giorgia Ponsi¹, Zita Salajkova²; ¹*Istituto Italiano di Tecnologia, Italy;* ²*Nanotec, CNR, Italy.* Stochastically Structured Illumination Microscopy (S2IM), offers improved resolution on naturally randomly moving objects. We implement it on the human retina affected by saccadic movements eliminates the need for an expensive, technically complex optical scanning system.

Th4B.2 • 16:45

The SIMple Microscope: Development of a Fibre-Based Platform for SIM Imaging in Unconventional Environments, Rebecca M. McClelland¹, Edward N. Ward¹, Francesca W. van Tartwijk¹, Stephen J. Devlin¹, Junqing Wang¹, Clemens F. Kaminski¹; ¹Univ. of Cambridge, UK. Optical-sectioning structured illumination microscopy (OS-SIM) patterns are generated by compact, off-the-shelf, in-line fibre components costing <£2k. They are easily assembled in a robust design, addressing practical limitations that currently limit SIM imaging in various environments.

Th4B.3 • 17:00

Astigmatic Vortex Beam Based Autofocus System for Super Resolution

Microscopy, Pranjal Choudhury¹, Bosanta R. Boruah¹; ¹Indian Inst. of Technology Guwahati, India. Focus stabilization is crucial for long-term fluorescence imaging, particularly in singlemolecule localization microscopy. We present an astigmatic vortex beam-based autofocus method that offers enhanced focus stability enabling robust and automated focus correction, improving imaging precision.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th4B.4 • 17:15

On-Chip Structured Illumination Microscopy Enabled by Femtosecond Laser Engineered Microscope Slide, Anna Pecorari², Francesco Ceccarelli¹, Alessia Candeo², Andrea Bassi², Roberto Osellame¹, Petra Paiè², Francesca Bragheri¹; ¹*Istituto di Fotonica e Nanotecnologie, Italy;* ²*Dipartimento di Fisica, Politecnico di Milano, Italy.* We present a compact glass slide engineered via femtosecond laser micromachining with the integration of optical waveguides, micro-optics and thermal shifters. The device generates dynamic patterns enabling structured illumination microscopy on conventional fluorescence microscopes.

Th4B.5 • 17:30

Wavelet-Informed Pix2pix Model With an FID-Based Loss Function for Confocal

Microscopy, Giray N. Mavis^{1,2}, Berkay A. Durmus³, Semih Burhan³, Serhat Tozburun^{1,2}; ¹*Izmir Biomedicine and Genome Center, Turkey;* ²*Izmir International Biomedicine and Genome Inst., Dokuz Eylul Univ., Turkey;* ³*Healysense A.S., Turkey.* We present a novel model based on conditional generative adversarial networks that generates high-quality images from low-quality confocal microscopy images. Our model outperforms four existing models in terms of FID, CMMD, and LPIPS metrics.

Th4B.6 • 17:45

Development of a Crosstalk-Reduced Holographic Modal Wavefront Sensor, Anitta Jomy¹, Amritha Jayan¹, Dinesh N. Naik¹, Biswajit Pathak¹; ¹*Indian Inst. of Space Sci & Tech, India.* In this paper, we propose an improved version of holographic modal wavefront sensing (HMWS) method based on five-point analysis with condition on intensity for better wavefront estimation with reduced crosstalk, compared to the conventional HMWS.

Room: ICM Room 5

16:30 -- 18:00 Th4A • Photodynamic Therapy II Presider: Lothar Lilge; Univ. Health Network, Canada

Th4A.1 • 16:30

Is Blood Flow and Blood Volume Informative for Photosensitizer Uptake? in Silico Simulation and in Vivo MRI and SFDI Imaging Study, Tina Saeidi¹, Michael Daly¹, Vaughn Betz², Lothar Lilge¹; ¹*Princess Margaret Hospital, Canada;* ²*Univ. of Toronto, Canada.* Knowledge of the spatial photosensitizer accumulation is paramount for personalized PDT treatment planning. Simulation studies showed that the spatial resolution of Blood flow and Blood volume must be larger than the attenuation coefficient of PDT treatment wavelength. Blood flow may predict chlorin e6 accumulation for PDT treatment planning.

Th4A.2 • 16:45

The Role of IR783 in Anticancer Photodynamic Therapy for the Treatment of Papillary Thyroid Cancer, Ilknur Gurtas¹, Nermin Topaloglu¹; ¹Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi Univ., Turkey. IR783-mediated photodynamic therapy was assessed for papillary thyroid cancer treatment. BCPAP cells treated with IR783 and 808-nm laser irradiation showed significant cell death, indicating IR783-PDT as a promising anticancer therapeutic strategy.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 13 June. For updated and complete information with special events, reference the online schedule.

Th4A.3 • 17:00

Real-Time Electrochemical Detection of Singlet Oxygen at the Single-Cell Level Using Platinum Microdisc Electrodes in Photodynamic Therapy, Tugba Akkas¹, Busra Sirek^{3,2}, Eda G. Safak³, Nermin Topaloglu³, Mustafa Sen³; ¹Department of Nanoscience and Nanotechnology, Inst. of Natural and Applied Sciences, Izmir Katip Celebi Univ., Turkey; ²Department of Biomedical Tecnologies, Inst. of Natural and Applied Sciences, Izmir Katip Celebi Univ., Turkey; ³Department of Biomedical Engineering,Faculty of Engineering and Architecture, Izmir Katip Celebi Univ., Turkey. Singlet oxygen production at the single cell level was induced by photodynamic therapy and detected by electrochemical method. Platinum disc microelectrodes effectively identified ROS via electrochemical signals from single cells.

Th4A.4 • 17:15

Photodynamic Potential of Prospero Autumnale Leaf Extract Against Prostate

Cancer, Ekin C. Yurtseven¹, Eylül S. Ceylan², Cennet Özay³, Nermin Topaloglu²; ¹Department of Biomedical Engineering, Inst. of Natural and Applied Sciences, Izmir Katip Celebi Univ., Turkey; ²Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi Univ., Turkey; ³Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Izmir Katip Celebi Univ., Turkey. Prospero autumnale extract was evaluated as a photosensitizer for anticancer photodynamic therapy. Cell viability analysis confirmed its concentration-dependent efficacy, inducing prostate cancer cell death under 50 and 100 J/cm² irradiation at 655 nm of wavelength.

Th4A.5 • 17:30

Intraoperative Glioma Delineation With Robust Estimation of 5-ALA-Induced PpIX Contributions in Multiple-Wavelength Excitation Fluorescence Spectroscopy : Application on Clinical Data, Arthur Gautheron^{1,2}, Michaël Sdika¹, Jacques Guyotat⁶, Antoine Uzel¹, David Meyronet^{3,4}, Mathieu Hébert⁵, Thiébaud Picart^{6,7}, Bruno Montcel¹; ¹CREATIS, France; ²CPE, France; ³Department of Neuropathology, Groupe Hospitalier Est, Hospices Civils de Lyon, France; ⁴Claude Bernard Lyon 1 Univ., Faculty of Medicine Lyon Est, France; ⁵Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School, Lab. Hubert Curien UMR 5516, France; ⁶Department of Tumoral and Vascular Neurosurgery, Pierre Wertheimer Hospital, Hospices Civils de Lyon, France; ⁷ancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, France. Diffuse gliomas are challenging to remove due to indistinguishable tumor margins. This work focuses on tissue classification using fluorescence spectroscopy. A novel approach enhances classification accuracy, aiding in better differentiation of tumor and healthy tissues.

Th4A.6 • 17:45

Assessing Mueller Matrix Polarimetry for Distinguishing Luminal a and B Breast Cancer Subtypes, Kseniia Tumanova¹; ¹Univ. of Toronto, Canada. Mueller matrix polarimetry, particularly the median M44 parameter, shows potential for luminal breast cancer subtype differentiation. Box-Cox transformation significantly improved results, highlighting the importance of preprocessing in polarimetric analysis.