Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

Monday, 19 May

08:15 -- 09:05 **Room: Presidio IV** MA • Opening Remarks and Keynote Session I Presider: Lars Jensen; TRUMPF SE & Co.KG, Germany and Anna Sytchkova; ENEA, Italy

MA.1 • 08:25 Keynote Submission

The Smaller the BIGGER — EUV Lithography Optics, Where Size Meets

Precision, Christoph J. Zaczek¹; ¹Carl Zeiss SMT GmbH, Germany. In the first half of 2024, the world's first EUV scanner for the High Numerical Aperture (NA) lithography was delivered to a semiconductor manufacturer, enabling a resolution of 8 nm in chip production. The optics that enable such resolution consist of aspherical mirrors up to one meter in size and are manufactured in series with a precision of sub-100-picometer.

09:05 -- 09:30 **Room: Presidio IV MB** • Applications I Presider: Astrid Bingel; Fraunhofer IOF, Germany

MB.1 • 09:05

Analysis of the Impact of Heat Treatment and the Presence of Hydrogen on the Optical Properties of WO₃ Thin Films Prepared by EBE, Jaroslaw Domaradzki¹. Michal Mazur¹. Damian Wojcieszak¹, Wiktoria Wichbrodt¹, Des Gibson²; ¹Wroclaw Univ. of Science and Techno, Poland; ²Inst. of Thin Films, Sensors and Imaging, UK. The paper shown that annealing significantly affected the morphology and optical properties of the WO₃ film. Exposure of the film to hydrogen caused a reversible change in refractive index due to its reduction to WO₂.

MB.2 • 09:10

Hybrid Deposited With E-gun Evaporation and RF Magnetron Sputtering of Molybdenum Trioxide Doped Titanium Dioxide for Electrochromic Device, Yin Kun-Zu¹, Hsi-Chao Chen¹, Rong-Ling Ni¹, Yu-Xuan Zhuang¹, Yu-Tung Sung¹, Yguan-Liang Yu¹, Guan-Yuan Huan¹; ¹NYUST, Taiwan. Molybdenum oxide (MoO₃) films were prepared with electron-gun evaporation and nickel oxide (NiO) as an auxiliary electrochromic layer. Titanium dioxide (TiO₂) was doped to MoO₃ using radio frequency (RF) sputtering for

ITO/MoO₃:TiO₂/(LiClO₄+PC)+PMMA/NiO/ITO complementary electrochromic devices.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

MB.3 • 09:15

Form-Birefringence in SiO₂/TiO₂/Al₂O₃ Heterostructures, Adriana V. Szeghalmi^{1,2}, Jinsong Liu^{1,2}, Martin Miculka^{1,2}, Sven Schröder²; ¹*Friedrich-Schiller-Universität Jena, Germany;* ²*Fraunhofer Inst. for Applied Optics and Precision Engineering IOF, Germany.* Atomically thin heterostructures deposited by atomic layer deposition show strong form-birefringence as determined by ellipsometry close to theoretical values. The form-birefringence depends on the period of the heterostructures indicating partial intermixing of the constituent layers.

MB.4 • 09:20

Advancing Transparent Flexible Electrodes via Polymeric Web-Assisted

Nanostructures, Aleksandra Pajak¹, Oleg Zabeida¹, Bill Baloukas¹, Jolanta Klemberg-Sapieha¹, Ludvik Martinu¹; ¹*Polytechnique Montréal, Canada.* Next generation optoelectronic devices rely on effective transparent flexible electrodes. Using polymeric webs as masks improves the electrodes' transparency through patterning, allowing additionally for their higher flexibility and durability.

MB.5 • 09:25

Development of a Compact Multi-Gradient Bandpass Filter for Hyperspectral Imaging in Smart Farming Applications, Philipp Farr¹, Chris Britze¹, Florian Gebert¹, Michael Vergoehl¹, Thomas Wettemann², Corneli Keim², Ralf Muenzenmayer², Christophe Buisset³, Michel Tossaint³, Pejman Nejadi⁴; ¹*Fraunhofer IST, Germany;* ²*Airbus Defence and Space GmbH, Germany;* ³*ESTEC, European Space Agency, Netherlands;* ⁴*ESRIN, European Space Agency, Italy.* A compact multi-gradient bandpass filter for agricultural hyperspectral imaging in the spectral range 400-1700 nm is developed using magnetron sputtering. With lift-off processing, three independent filters are integrated onto a single 10 mm substrate.

10:00 -- 11:00

Room: Presidio IV

MC • Deposition Technologies I

Presider: Des Gibson; Univ. of the West of Scotland, UK and Markus Tilsch; Viavi Solutions Inc, USA

MC.1 • 10:00 (Invited)

Ion Beam Sputter Deposition of Low Loss Optical Coatings on Large Substrates, Ramin Lalezari¹, Eric Baltz¹, Howard Champoux¹, Zach Gerig¹; ¹*Five Nine Optics, USA.* Abstract: Recent applications of high energy lasers have created a demand for large area complex coatings with low absorption and high LIDT on meter scale mirrors. We describe system design considerations and results for production of such coatings.

MC.2 • 10:25

Development of an IBS Coating System for Optics with a Diameter of 2 Meters, Tarik Kellermann¹, Morten Steinecke¹, Marco Jupé¹, Kai Starke², Andreas Wienke¹, Detlev Ristau¹; ¹Laser Zentrum Hannover e. V., Germany; ²Cutting Edge Coatings GmbH, Germany. An upscaling concept of the ion beam sputtering process for large area optics is presented with a novel approach including a movable ion and deposition material source. First deposited single layers show promising results.

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

MC.3 • 10:30

Magnetron Sputtering for High Performance Infrared Optical Coatings up to 14

μm, Florian Gebert¹, Martin Bischoff¹, Chris Britze¹, Philipp Farr¹, Michael Vergoehl¹; ¹*Fraunhofer IST, Germany.* In the 4.5-14 μm infrared spectral range data of only few materials with low absorption are available. Results on sputter-deposited coatings are presented, focusing on optical properties, layer stress and environmental stability.

MC.4 • 10:35

Ion-Beam-Sputtered Mid-Infrared Coatings for Hybrid Supermirrors, Lukas W. Perner¹, Valentin J. Wittwer^{1,2}, Gar-Wing Truong³, Garrett D. Cole³, Thomas Südmeyer¹; ¹Laboratoire *Temps-Fréquence, Institut de Physique, Université de Neuchâtel, Switzerland;* ²UTOM AG, *Switzerland;* ³Thorlabs Crystalline Solutions, USA. We report details on the design, manufacturing, and characterization of low-loss ion-beam-sputtered mulitlayers used for amorphous-crystalline hybrid supermirrors for mid-infrared applications, including details on anti-reflective and highly reflective coatings

MC.5 • 10:40

Ion Beam Sputtering for Substrate Deposition with a Size of 2m: Simulation and Optimization, Holger Badorreck¹, Tarik Kellermann¹, Dennis Barton², Morten Steinecke¹, Marco Jupé¹, Detlev Ristau^{1,3}, Andreas Wienke^{1,3}; ¹Laser Zentrum Hannover e.V., *Germany;* ²*Fraunhofer-Institut für Schicht- und Oberflächentechnik (IST), Germany;* ³*Cluster of Excellence PhoenixD, Leibniz Univ. Hanover, Germany.* The deposition process by ion beam sputtering is scaled to a huge substrate size. Homogeneous coatings are optimized by adjusting the moveable target positions. A digital twin model combines gas flow and atomistic growth simulations.

MC.6 • 10:45

Ion-Beam-Sputtered Silica-Tantala Alloys for Nanophotonics, Grisha Spektor¹, David Carlson¹, Zachary Newman¹, Chang Kristina¹, Daniel Hickstein¹, Ann Fitzgerald², Brett Buchholtz², Mark Jablonski²; ¹Octave Photonics, USA; ²Plasma Optik, USA. We present a nanophotonic platform of ion-beam-sputtered silica–tantala (SiO2–Ta2O5) alloys, where compositional tuning tailors linear and nonlinear optical properties, enabling low-loss waveguides that enhance supercontinuum generation from near-infrared to visible and significantly advance integrated photonics.

MC.7 • 10:50 Postdeadline Submission

From Near Infra-red to the Deep Ultra Violet: Low Loss Coatings With Oxides Using an Ion Beam Sputtering System., Alex Ribeaud¹, Jürgen Pistner¹, Isabel Vela-Perez¹, Christian Mühlig², Thomas Gischkat², Harro Hagedorn¹, Sven Schröder²; ¹Bühler Leybold Optics, *Germany*; ²Fraunhofer IOF Jena, Germany. The optical performance of dielectric mirror coatings at 1064nm, 532nm, 355nm and 193nm deposited using a dual Ion Beam sputtering system are being presented and discussed.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

13:15 -- 14:30

Room: Presidio IV

MD • Sustainability and Reliable Coatings

Presider: James Oliver; Vacuum Innovations LLC, USA and Michael Vergoehl; Fraunhofer IST, Germany

MD.1 • 13:15 (Invited)

Working Collectively to Improve Sustainability in Optics Manufacturing – a Deeper Look into Efforts in Coating Processes, Jessica DeGroote Nelson¹, Estefania Cervantes¹, Mathias Mende¹; ¹Edmund Optics Inc., USA. This presentation explores sustainability in optics manufacturing, highlighting material selection, waste reduction, energy-efficient coatings, and eco-friendly packaging. Industry collaboration is key to balancing performance with environmental responsibility and driving future sustainable innovations.

MD.2 • 13:40 (Invited)

Aspects of Sustainability in Optical Filter Manufacturing, Marc Lappschies¹, Jan Brossmann¹, Stefan Jakobs¹; ¹Optics Balzers Jena GmbH, Germany. Minimizing consumption of energy and resources in industrial manufacturing processes does not only reduce costs, but also impacts all related environmental issues. One key is computational pre-production analysis allowing for an efficient operation in a rapid-prototyping regime.

MD.3 • 14:05

Reliability of Optical Thin Filters, Charles H. Fields¹, Markus K. Tilsch²; ¹Optical Security and Performance (OSP), USA; ²VIAVI Solutions, USA. We have performed accelerated temperature life tests on optical thin film filters. The results show an activation energy of 1.08 eV and extracted a mean-time-to-failure of more than 43 years at T = 50°C.

MD.4 • 14:10

Development of a Methodology to Produce Gradient-Index Optical Filters, Roberto Sangines¹, Ramon Rodriguez Lopez^{1,2}, Kevin R Maldonando-Dominguez¹, Noemi Abundiz-Cisneros¹, Estrella Teran-Hinojosa¹, Juan Aguila-Muñoz¹, Roberto Machorro-Mejia¹; ¹Universidad Nacional Autonoma de Mexico, Mexico; ²CICESE, Mexico. In this work we have developed a methodology that correlates the plasma emission to the target poisoning and hence the ability to produce different film compositions with their respective deposition rate with high process control.

MD.5 • 14:15

Long-Term Aging Characterization of PIAD SiO₂ and HfO₂ Layers, Eric A. Lavastre¹, Arthur Soutenain¹, Marine Chorel², Cédric Ducros^{4,2}, Christelle Dublanche-Tixier³; ¹*CEA*, *France;* ²*CEA, France;* ³*IRCER, France;* ⁴*Univ. of Grenoble Alpes, France.* This work deals with the long-term behavior of PIAD SiO₂ and HfO₂ monolayers used in specific LMJ coatings. Spectral and mechanical variations are observed on SiO₂ layers only. Climate chamber tests can stabilize these layers.

MD.6 • 14:20

Effects of Spit Defects in Vapor-Deposited IR Coatings, Chelsea D. Appleget¹, Peter D. Fuqua¹, Paul M. Adams¹, John Chaney¹, Vania Jiao¹, James D. Barrie¹; ¹*The Aerospace Corporation, USA.* Circular freckle features were observed in ZnS/Ge multilayer coatings,

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events,

reference the online schedule.

originating at centralized spit defects. These defects yielded subtle variations in structural morphology, cathodoluminescence, and sputter yield response, and remained largely stable under further environmental testing.

MD.7 • 14:25

Multifunctional Nanorough Optical Coatings on ZnS Windows for Electro-Optical Systems, Nadja Felde¹, Nancy Gratzke¹, Astrid Bingel¹, Sven Schröder¹, Edi Shaul², Shay Joseph²; ¹*Fraunhofer IOF, Germany;* ²*Rafael Advanced Defense Systems Ltd., Israel.* Multifunctional saltwater-repellent coatings for optical ZnS components have been developed by optimizing nanorough structural properties. These coatings can open a path to sensor windows with improved durability and functionality in maritime and other challenging environments.

15:00 -- 16:15 Room: Presidio IV ME • Laser Coatings I

Presider: Harro Hagedorn; Bühler Leybold Optics, Germany and Andrius Melninkaitis; Vilniaus Universitetas, Lithuania

ME.1 • 15:00 (Invited)

The Impact of Nano-Bubbles on Laser Damage Performance of IBS Fabricated MLD Coatings, Colin Harthcock¹; ¹Lawrence Livermore National Laboratory, USA. We study the effects of 1nm bubbles in hafnia via coating process optimization on the laser damage performance at the first second and third harmonics of Nd:YAG.

ME.2 • 15:25

Novel LIDT Measurement Routine for Coating Optimization of Low Defect Density Optics in Nanosecond Pulse Regime, Alexander Weiß¹, Morten Steinecke¹, Kevin Kiedrowski¹, Heinrich Mädebach¹, Henrik Ehlers², Andreas Wienke^{1,3}, Marco Jupé^{1,3}; ¹Laser Zentrum Hannover e.V., Germany; ²Laseroptik GmbH, Germany; ³Cluster of Excellence PhoenixD, Germany. A novel LIDT measurement routine suitable for coating optimization of low defect density optics in the nanosecond pulse regime is presented. Results of a high reflectance mirror irradiated according to this routine are discussed.

ME.3 • 15:30

Ultrafast Laser Stress Figuring (ULSF) for Compensation of High Energy Laser Dielectric Coatings, Carolyn Hokin¹, Kevin Laverty¹, Matthew Brophy², Dan Brooks², Pete Kupinski², Brandon Chalifoux¹; ¹Univ. of Arizona, USA; ²Optimax, USA. Ultrafast laser stress figuring (ULSF) can correct coating-induced figure deformation via stress fields patterned into bulk material. We investigate the stability of ULSF processed fused silica coated with an ion beam sputtered tantala/silica film.

ME.4 • 15:35

All-Alumina Quarter-Wave Plate Coating Fabricated by Glancing Angle Deposition for High Power Laser Application, Solene Bertet¹, Sara MacNally², Marine Chorel¹, Eric A. Lavastre¹, Daniel Sadowski², Corinne Marcel³, Bruno Gallas⁴, Marcela Mireles Ramirez²; ¹CEA CESTA, France; ²Laboratory for Laser Energetics, USA; ³CEA Le Ripault, France; ⁴Institut des

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

NanoSciences de Paris, Sorbonne Université, France. An alumina quarter wave plate fabricated by glancing angle deposition is presented. It is a multilayer composed of 7 layer-pairs of isotropic and anisotropic layers deposited at $\pm 76^{\circ}$ with an anti-reflective layer on top.

ME.5 • 15:40

Thermal Effects Induced by Nodular Defects in High-Reflection Film Under CW Laser Irradiation, Qian Ning^{1,2}, Hongfei Jiao^{1,2}, Xinshang Niu^{1,2}, Dongdong Li^{1,2}, Xiaochuan Ji^{1,2}, Jingjing Xia^{1,2}, Jinlong Zhang^{1,2}, Xinbin Cheng^{1,2}, Zhanshan Wang^{1,2}; ¹*MOE Key Laboratory of Advanced Micro-Structured Materials, Tongji Univ., China;* ²*Inst. of Precision Optical Engineering, School of Physics Science and Engineering, Tongji Univ., China.* The paper investigates the thermal effects caused by nodules in reflective coating under continuous-wave laser irradiation. Simulation calculations reveal how nodule morphology and material absorption *influence thermal effects.* A preliminary correlation between defects and thermal effects has been established.

ME.6 • 15:45

Nondestructive Characterization of Nano-Sized Absorbing Defects Within Laser Devices Using AFM-IR, Zhenyin Lu¹, Shenghuan Fang¹, Binbin Jiang¹, Hongfei Jiao¹, Xinbin Cheng¹, Zhanshan Wang¹, Jinlong Zhang¹; ¹*Tongji Univ., China.* Fabrication-induced absorbing defects can significantly degrade device performance. In this study, AFM-IR was employed to successfully characterize defects as small as 50 nm and identify multiple substances within the same region.

ME.7 • 15:50

266nm Thermal Protection Window Based on Ultra-Thin Aluminum Layer, Yujie Liu¹, Chenying Yang², Yueguang Zhang¹, Weidong Shen¹; ¹State Key Laboratory of Modern Optical Instrumentation, Zhejiang Univ., China; ²Hangzhou Inst. for Advanced Study, Univ. of Chinese Academy of Sciences, China. We proposed a 266 nm thermal protective window based on the ultra-thin Aluminum layer with 67.7% transmittance at 266nm and >95% infrared reflectance, reducing thermal lensing effects by 99%.

ME.8 • 15:55

Laser Resistance of Low-Density SiO₂ Optical Thin Films by Sputtering and Electron Beam Deposition, Yuhang Yang¹, Taisei Wakamiya², Naoya Tajima¹, Takayuki Matsudaira³, Hiroshi Murotani¹; ¹*Tokai Univ., Japan;* ²*the Japan Steel Works, Ltd., Japan;* ³*Shincron Co., Ltd., Japan.* This study evaluates the 355 nm laser damage threshold of single-layer SiO₂ films with varying refractive indices, fabricated via simultaneous electron beam evaporation and direct current pulse sputtering deposition.

ME.9 • 16:00

Influence of Different Impurities on ion-Beam Sputtered UV-Coatings, Matthias Falmbigl¹, Antonio Checco¹, Jason George¹, Binyamin Rubin¹; ¹Veeco Instruments Inc, USA. The influence of different impurities on ion beam sputtered thin film materials for optical coatings is investigated. Emphasis is given to materials that are typically used for the ion optics of gridded RF-sources.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

ME.10 • 16:05

Transformer Neural Network-Based Algorithm for Manufacturing Error Inversion of Optical Coatings, Jianglin Dai¹, Xiaochuan Ji¹, Xinshang Niu¹, Hongfei Jiao¹, Xinbin Cheng¹, Zhanshan Wang¹, Jinlong Zhang¹; ¹*Tongji Univ., China.* A Transformer-based deep learning algorithm is proposed to efficiently inverse thickness errors in optical coatings, achieving spectral differences under 1% with computations in milliseconds after training on simulated datasets.

ME.11 • 16:10

Optical Second Harmonic Generation From Three-Dimensional Graphene Films for non-Linear Optics, Emma Keel¹, Till Weickhardt², Giancarlo Soavi², Marco Caffio³, Des Gibson¹, Carlos Garcia Nunez⁴; ¹Univ. of the West of Scotland, UK; ²Inst. of Solid State Physics, Germany; ³Integrated Graphene, UK; ⁴Univ. of Glasgow, UK. In this work, optical and structural properties of three-dimensional graphene foam have been analysed to validate the potential use of this material for creating 2nd and 3rd harmonic waves from short laser pulses.

19:00 -- 20:00 Room: Presidio IV

MF • Evening Session

Presider: Lars Jensen; TRUMPF SE & Co.KG, Germany and Anna Sytchkova; ENEA, Italy

MF.1 • 19:00 Evening Speaker Submission

Unlocking the Potential of AR Glasses Through Novel Materials and Processes, Barry Silverstein¹; ¹*Meta Platforms Inc., USA.* Augmented reality (AR) glasses are poised to become a mainstream consumer product driven by smart glass use cases such as image visualization and Al-assisted information. To achieve comfortable all-day wearability in a glasses form factor, novel optical materials, coatings, processes and resonant structures are necessary. This talk will discuss technical advances in materials and coatings that serve this objective.

Tuesday, 20 May

08:15 -- 09:30 Room: Presidio IV TA • Applications II Presider: Robert Sargent; Viavi Solutions Inc, USA and Myriam Zerrad; Fresnel Institut, France

TA.1 • 08:15 (Invited)

Lasing Mode Control of Fiber Lasers by Higher-Order Fiber Grating, Kazuo

Hasegawa¹; ¹*Grad Schl for Creation New Photonics Ind, Japan.* By inscribing a refractive index structure directly into the core with a femtosecond laser, forming a long period fiber Bragg grating, we were able to control the oscillation of a narrow linewidth fiber laser, which was not possible with conventional quarter-wave Bragg gratings.

TA.2 • 08:40

Achromatic Performance of Reflective Waveplates Fabricated via Glancing Angle Deposition, Angel Aquino¹, Sara MacNally¹, Christopher Smith¹, Amy L. Rigatti¹, Marcela

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks

as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

Mireles Ramirez¹; ¹Univ. of Rochester, USA. High-power and broadband lasers require achromatic retarding optical elements able to work in reflection to avoid nonlinear effects. Here we evaluate the achromatic performance of reflective waveplates fabricated by glancing angle deposition.

TA.3 • 08:45

Fourier Analysis of Ultrafast Acoustic Waves in Thin Films, Karel Zidek¹, Martina Hlubučková¹, Vít Kanclír¹, Jan Václavík¹, Petra Veselá¹; ¹*Research Center TOPTEC, Inst. of Plasma Physics of the Czech Academy of Sciences, Czechia.* We analyzed a picosecond sonar signal from strain wave reflections in a thin-film stack. Fourier analysis revealed attenuation of acoustic frequencies above 0.2 THz. We discuss implications for spatial resolution in the experiment.

TA.4 • 08:50

Wideband Polarized Beam Combiner With Low Thermal Rise Property for High-Brightness Blue Laser, Muneo Sugiura¹, Takuro Yoshida², Hisayuki Oguchi³, Hiroaki Suzuki³, Chiaki Inoue², Keiji Nishimoto²; ¹*Tokai Optical Co., Ltd., Japan;* ²*Tokai Optical Holdings Co., Ltd., Japan;* ³*Panasonic Connect Co., Ltd., Japan.* We have developed wideband polarized beam combiners for blue lasers by magnetron sputtering and confirmed that its low thermal rise property allows to double the output energy from the laser while maintaining high beam quality.

TA.5 • 08:55

Simplified Fabrication of Optical Coatings for Folded Jamin Interferometers Used for Refractive Index Measurement of Gases and Aerosols, Daniel Poitras¹, Alireza Moallemi¹, Joel C. Corbin¹, Jalal Norooz Oliaee¹; ¹National Research Council Canada, Canada. In this work, we present the design and fabrication of optical coatings for the main optical component of a Folded Jamin Interferometer, focusing on simplifying their fabrication.

TA.6 • 09:00

Thermally Tuneable Fabry-Perot Ultrasound Sensor With Integrated Heating Electrode for Camera-Based Photoacoustic Tomography, Claus Villringer^{3,1}, Jan Sievers¹, Leonid Goldenberg^{3,2}, Christian Dreyer^{3,2}, Sigurd Schrader³, Martin Regehly³, Jan Laufer¹; ¹Institut für *Physik, Martin-Luther Universität Halle-Wittenberg, Germany;* ²Research Division Polymeric Materials and Composites PYCO, Fraunhofer-Inst. for Applied Polymer Research, *Germany;* ³Technical Univ. of Applied Sciences Wildau, Germany. This work presents the development of a planar Fabry-Perot ultrasound sensor with an integrated heating electrode, capable of tuning and fixing the fringe position to a setpoint with a deviation of ±0.4 pm using a PID controller.

TA.7 • 09:05

Active Multi-Dielectric Cavity With Bloch Modes for Optical Gas Sensing, Lionel Fliegans¹; ¹Institut Fresnel, France. We are developing a compact gas sensor for 10 ppb–10 ppm detection of formaldehyde and acetaldehyde using electroluminescence, multi-dielectric microcavities, chemical functionalization, and microfluidic integration for enhanced sensitivity and molecular specificity in confined environments.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

TA.8 • 09:10

Bragg-Reflector-Enhanced Electrochromic Devices With Adjustable Optical

Performance, Martin Crouan¹, Bill Baloukas¹, Oleg Zabeida¹, Jolanta-Ewa Klemberg-Sapieha¹, Ludvik Martinu¹; ¹*Polytechnique Montréal, Canada.* All-solid-state electrochromic devices typically exhibit a limited reflection increase during their coloration. By integrating WO₃/ITO bilayers, we achieve over twice the reflection modulation obtained using standard architectures, offering new opportunities for smart optics.

TA.9 • 09:15

Coating Essentials for Camera Design: Perspectives From Coating Graduate

Students, Natalie Fullerman¹, Zachary B. Schuberg¹, Megan Fallon¹, Samuel T. Fujisawa-Phillips¹, Yifei Huang¹, Madeleine LaChance¹, Jennifer D. Kruschwitz¹; ¹Univ. of Rochester, USA. This paper outlines the results of optical interference coating students establishing system requirements for lens design students working on a macro *butterfly* camera. The coating students optimized throughput and enabled an extra visualization filter.

TA.10 • 09:20

Plasmonic Distributed Bragg Reflectors for Volatile Organic Compounds

Sensing, Zdeněk Krtouš^{2,1}, Öleksandr Polonskyi³, Pavel Pleskunov¹, Bill Baloukas¹, Ludvik Martinu¹, Jaroslav Kousal²; ¹Department of Engineering Physics, Polytechnique Montréal, Canada; ²Department of Macromolecular Physics, Charles Univ., Czechia; ³Department of Chemical Engineering, UC Santa Barbara, USA. Polymer-based Distributed Bragg Reflectors (DBRs) are emerging as promising low-cost volatile organic compound sensors. Here, Ag nanoparticles-doped DBRs are prepared via plasma methods, while using precise optical modeling and exploring their sensing potential.

TA.11 • 09:25

Bandwidth Control of Mid-IR Bandpass Filters to Optimise Sensitivity of NDIR Methane

Sensors, Lewis Fleming^{1,2}, Shigeng Song¹, David Hutson², Sam Ahmadzadeh¹, Ewan Waddell², Ian Brikley², Craig Michie³, Ivan Andonovic³, Emma Keel¹, Paul Hargreaves⁴, Des Gibson^{1,2}; ¹*The Univ. of The West of Scotland, UK;* ²*Albasense Ltd, UK;* ³*Strathclyde Univ., UK;* ⁴*Scottish Rural College, UK.* Here, we discuss the application of a very-narrow bandpass mid-IR optical filter designed to capture the Q-branch of the methane v₃ absorption band, providing high-sensitivity requirements for NDIR sensing in Digital Dairy Farming applications.

10:00 -- 11:00 Room: Presidio IV

TB • Deposition Technologies II

Presider: Bill Baloukas; Polytechnique Montréal, Canada and Bin Fan; Optorun Co Ltd, Japan

TB.1 • 10:00 (Invited)

Recent Progress on Versatile Variable Filters Using HELIOS Reactive Magnetron

Sputtering Technology, frederic lemarquis¹, Antonin moreau¹, Fabien Lemarchand¹, Cihan Koc¹, Detlef Arhilger², Harro Hagedorn², Julien H. Lumeau¹; ¹*Fresnel Institut, France;* ²*Bühler, Germany.* Gradient optical interference filters are a promising way to miniaturize imaging spectrophotometer. In this paper, we present a versatile method for the fabrication of variable filters with different spatial profiles based on magnetron sputtering (PARMS).

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

TB.2 • 10:25

Bandpass Filters Using Magnetron Sputtered SiO₂ and a-Si for mid-IR

Wavelengths, Penghui Ma¹; ⁷National Research Council Canada, Canada. Bandpass filters based on magnetron sputtered SiO₂ and a-Si are investigated. The effort is not limited to the near-IR range, but also tested for the highest possible wavelength for these materials in the mid-IR. We report on the fabrication of a bandpass filter around 3.5 μ m.

TB.3 • 10:30

Ultra-Narrowband Absorption Filters, William H. Southwell¹; ¹*Table Mountain Optics, USA.* Ultra-narrowband, down to 1 Angstrom or lower, absorption filter designs are presented. These are optical interference coatings using standard coating materials, but no absorbing layers or metals are included in the stack.

TB.4 • 10:35

Optical Emission Spectroscopy of Plasmas in Pulsed DC Reactive Magnetron

Sputtering, Estrella Teran-Hinojosa², Roberto Sangines¹, Noemi Abundiz-Ĉisneros¹, Juan Aguila-Muñoz¹, Roberto Machorro-Mejia²; ¹*Materiales Avanzados, CNyN, UNAM, SECIHTI, Mexico;* ²*Materiales Avanzados, CNyN, UNAM, Mexico.* Reactive pulsed DC magnetron sputtering plasma was analyzed using optical emission spectroscopy. It was found that higher duty cycles required more oxygen for target poisoning, and enhanced silicon emission and film's deposition rate.

TB.5 • 10:40

Comparison of Optical and Antibacterial Behavior of Nb2O5 Coatings Prepared by Gas Impulse Magnetron Sputtering With Homogenous and Gradient Distribution of Bioactive Ions, Damian Wojcieszak¹, Agata Obstarczyk¹, Bogumila Szponar², Patrycja Pokora¹, Marcin Przadka³, Paulina Kapuscik¹, Jaroslaw Domaradzki¹, Des Gibson⁴; ¹Faculty of Electronics, Photonics and Microsystems, Wroclaw Univ. of Science and Technology, Poland; ²Inst. of Immunology and Experimental Therapy, Polish Academy of Sciences, Poland; ³Food4Future Technologies Sp. z o. o., Poland; ⁴Inst. of Thin Films, Sensors and Imaging, Univ. of the West of Scotland, UK. Transparent Nb2O5-based thin-film coatings prepared by Gas Impulse Magnetron Sputtering (GIMS) demonstrate excellent optical properties and selective antibacterial activity. Doping with bioactive metals, distributed uniformly or in a gradient, enhances biocidal activity.

TB.6 • 10:45

Direct Current and Radio Frequency Plasma Sources for Co-Sputtering of All-Solid-State Electrochromic Devices, Yu Wei Chang¹, Hsi-Chao Chen¹, Hong-Jie Lin¹, Ri-Jun Li¹, Yi-Jie Jiang¹, Shih-Hao Shao¹, Po-Hung Li¹; ¹NYUST, Taiwan. This study mainly uses tungsten trioxide (WO₃) doped titanium dioxide (TiO₂) to prepare complementary all-solid-state electrochromic device, and direct current (DC) and radio frequency (RF) power is used to sputter TiO₂ doped to WO₃ film.

TB.7 • 10:50

Characterization of PARMS Produced 1-µm Thick Ta2O5 and SiO2 Monolayers in 0.35-5 µm Spectral Range, Tatiana Amotchkina², Aliaksandr Myslivets³, Nadzeya Khinevich³, Jordi Sancho-Parramon⁴, Vesna Janicki⁴, Michael K. Trubetskov^{1,2}; ¹Max Planck Inst. of Quantum Optics, Germany; ²OTF Studio GmbH, Germany; ³I-Photonics UAB, Lithuania; ⁴Institut Ruder

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events,

reference the online schedule.

Boskovic, Croatia. Layer materials combination Ta2O5/SiO2 is widely used for production of optical coatings in the broadband spectral ranges. Optical properties of PARMS produced monolayers were characterized based on spectral and ellipsometric data using two software tools.

TB.8 • 10:55

Optical and Durability Properties of Microwave Plasma Assisted Sputter Deposited Stoichiometric Silicon Nitride, Connor Lindsay¹, Carlos Garcia Nunez², Lewis Fleming¹, Ian Brikley¹, Stuart Reid⁴, Iain Martin³, Des Gibson¹; ¹Univ. of the West of Scotland, UK; ²Electronics and Nanoscale Engineering, Univ. of Glasgow, UK; ³Physics Department, Univ. of Glasgow, UK; ⁴Department of Biomedical Engineering, Univ. of Strathclyde, UK. A study of the optical and mechanical properties of stoichiometric Silicon Nitride deposited using microwave plasma assisted sputtering. A coating stress of -317MPa, hardness of 1.3GPa was obtained with a transmittance range of 300nm-5µm.

13:15 -- 14:30

Room: Presidio IV

TC • Manufacturing and Process Control

Presider: Silvia Schwyn Thöny; Evatec Ltd, Switzerland and Christoph Zaczek; Carl Zeiss SMT GmbH, Germany

TC.1 • 13:15 (Invited)

OIC 2025 Manufacturing Challenge, Daniel Poitras¹, Amy L. Rigatti², Michael R. Jacobson³, Catherine C. Cooksey⁴, Luke J. Sandilands¹, John J. Gilmore⁵; ¹National Research Council Canada, Canada; ²Univ. of Rochester, USA; ³Optical Data Associates, USA; ⁴USA, National Inst. of Standards and Technology, USA; ⁵Optimax, USA. The 2025 Optical Interference Coatings (OIC) Manufacturing Challenge consists in designing, fabricating and measuring a filter with transmittance and front and back reflectance spectra matching a predetermined profile as closely as possible.

TC.2 • 13:45 (Invited)

From Measurement to Control: Synergizing Advanced in Situ Metrology and Smart Data Analysis in Thin Film Deposition, Florian Carstens¹; ¹Laser Zentrum Hannover e.V., *Germany.* Developed in-situ coating-process measurement techniques and concepts for structured central data aggregation are presented. The talk highlights how these enable advanced approaches to precise control and process optimization in designing and manufacturing optical interference coatings.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

TC.3 • 14:10

Monitoring in Situ the Thermal Annealing of TiO₂-GeO₂ Coatings for High-Performance Distributed Bragg Reflectors, Michele Magnozzi^{1,2}, Stefano Colace¹, Shima Samandari¹, Michael Caminale¹, Valentina Venturino¹, Christophe Michel³, Julien Teillon³, Maurizio Canepa¹; ¹Università degli Studi di Genova, Italy; ²Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Italy; ³Laboratoire des Matériaux Avancés, France. The refractive index and thickness of amorphous mixed TiO₂-GeO₂ coatings are tracked in real time during the thermal annealing of the coatings. Results shed light on the relation between the annealing temperature and coatings properties.

TC.4 • 14:15

Direct Intermittent Monitoring in the DUV Range, Detlef Arhilger¹, Harro Hagedorn¹, Alfons Zoeller¹; ¹*R*&*D*, *Buhler Alzenau GmbH, Germany.* The wavelength range for direct monitoring in box coaters was extended to the DUV range. An optical path with deuterium lamp, a special designed achromatic lens system and a PMT detector was used.

TC.5 • 14:20

Determination of Layer Thickness During Double-Side Coating, Thomas Melzig¹, Stefan Bruns¹, Philipp Farr¹, Bernd Galonska², Michael Schneider², Michael Vergoehl¹; ¹*Fraunhofer IST, Germany;* ²*VON ARDENNE, Germany.* Optical interference coatings are often applied on both sides of a substrate. We show an adaption of broad band monitoring of layer thickness for coating machines that allow simultaneous stack deposition.

TC.6 • 14:25

In-Situ Optical Monitoring for Linear Variable Filters (LVFs) Deposited Using Microwave Plasma Assisted Reactive Sputtering, James A. Rogers¹, Simon Hicks², Matthew Neeves², Frank Placido¹, Shigeng Song¹; ¹Univ. of the West of Scotland, UK; ²Intellemetrics Global Ltd., UK. This work presents the deposition of linear variable filters with a wavelength range of 450-800nm, control of the filters was achieved using a monochromatic optical monitor, demonstrating superior controllability when compared to quartz crystal monitoring.

14:50 -- 15:35 Room: Presidio IV

TD • Structured and Metaoptics

Presider: Jessica DeGroote Nelson; Edmund Optics Inc., USA and Michel Lequime; Fresnel Institut, France

TD.1 • 14:50 (Invited)

Metaoptics, From Lenses to Optical Module Solutions, Theodor Nielsen¹, Ram Narayanswamy¹; ¹*NIL Technology, Denmark.* In the paper we present the value chain from design to prototyping and manufacturing of meta-optical element (MOEs) and how they can fully replace refractive optics, to create cameras for eye-tracking, gesture recognition, and more.

TD.2 • 15:15

Nano-Imprint Lithography of Metal Oxides: Materials and Nano-Fabrication Methods for Photonic Metasurfaces, Marco Abbarchi¹; ¹SOLNIL, France. Sol-gel coatings and nano-imprint lithography are employed to directly frame 3D nano-structures composed of hard ceramics (e.g. SiO2, TiO2) over large surfaces. Photonic metasurfaces can be produced with high throughput

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks

as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

at low cost for applications in structural colour, anti-reflection coatings for high power lasers, AR/VR, and light emission.

TD.3 • 15:20

Architecting Periodic Columnar-Thin-Film Bilayer with a Central Layer Defect as Spectral Reflection-Hole Filter, Abdul Rehman¹, Akhlesh Lakhtakia¹; ¹Department of Engineering Science and Mechanics, The Pennsylvania State Univ., USA. Periodic bilayers of columnar thin films with central layer defects were fabricated and optically characterized. Experimental analysis indicates that an optimal number of unit cells will deliver the best performance as a spectral reflection-hole filter.

TD.4 • 15:25

Enhancing Stability of the Optical Properties of Nanostructured All-Silica

Coatings, Marcela Mireles Ramirez¹, Sara MacNally¹, Christopher Smith¹, Amy L. Rigatti¹; ¹Univ. of Rochester, USA. We present the use of hexamethyldisilazane as a passivation treatment for nanostructured silica waveplates. Our results show the successful passivation of the silica matrix, preventing interaction with moisture, and overall stabilizing the optical properties.

TD.5 • 15:30

Emerging Fabrication Technologies for all-Dielectric Periodic Metastructures in

Coatings, Lina Grineviciute^{1,2}, Julianija Nikitina¹, Tomas Tolenis^{1,4}, Mindaugas Andrulevicius³, Simonas Indrisiunas¹; ¹Ctr for Physical Sciences & Technology, Lithuania; ²Vilnius Univ., Lithuania; ³Kaunas Univ. of Technology, Lithuania; ⁴ELI Beamlines Facility ERIC, Czechia. The method to structure and oxidize metallic layers on glass, creating transparent oxide surfaces with periodic patterns, is presented. Sub-micrometer gratings are formed using laser interference patterning of tantalum layers, followed by thermal oxidation.

Wednesday, 21 May

08:15 -- 09:30

Room: Presidio IV

WA • Ultrafast Coatings

Presider: Peter Fuqua; The Aerospace Corporation, USA and Vladimir Pervak; Ludwig-Maximillians-Universität Munchen, Germany

WA.1 • 08:15 (Invited)

Thin Film as Ultrashort Laser Pulse Shaper, Jing Meng¹; ¹Optimax Systems Inc, USA. Shaped ultrashort pulse is essential to highly efficient laser-matter interactions. Beyond the SLM, this study investigates the potential of thin film as Femtosecond pulse shaper due to its compact size, user friendly and low cost.

WA.2 • 08:40 (Invited)

Development of Refractive Index Control Technology for Optical Thin Films by a Combination of Sputtering and Electron Beam Evaporation, Naoya Tajima¹, Takayuki Matsudaira², Hiroshi Murotani¹; ¹*Tokai Univ., Japan;* ²*Shincron Co., Ltd., Japan.* By controlling the refractive index of SiO₂ optical thin films using a deposition system that combines sputtering

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks

as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

and EB evaporation, 51-layer SiO_2 mono-material multilayer coatings, comprising the same deposition material as the substrate, were fabricated.

WA.3 • 09:05

Investigation of sub-ps LIDT of Various Dielectric Coatings Deposited by PVD Techniques With the Same Laser Damage set-up, Marine Chorel¹, Océane Aubard¹, Nadja Roquin¹, Laurent Lamaignère¹, Eric A. Lavastre¹; ¹*CEA, France.* During the last few years, in the search of increasing the LIDT of Petal mirrors, various materials and coatings techniques have been evaluated on the same damage set-up. This gives insights for manufacturing.

WA.4 • 09:10

Impact of Intermediate States on Nonlinear Absorption, Joshua R. McCauley¹, Sebastian Balendat^{1,3}, Andreas Wienke^{1,2}, Detlev Ristau^{1,2}, Marco Jupé^{1,2}; ¹Laser Zentrum Hannover, Germany; ²Cluster of Excellence PhoenixD, Leibniz Univ. Hannover, Germany; ³Inst. for Quantum optics, Leibniz Univ. Hannover, Germany. During deposition of hafnia thin films, defects such as oxygen vacancies or super-stoichiometry can lead to the formation of intermediate states between the valance and conduction bands. These were investigated for nonlinear absorption.

WA.5 • 09:15

High-Power Laser-Interface Interactions and Fundamental Mechanisms of Laser Damage of High-Quality Multilayer Coatings by Femtosecond Laser Pulses, Vitaly Gruzdev¹; ¹Univ. of New Mexico, USA. Analysis of interactions of high-power femtosecond laser pulses with dielectric-dielectric interfaces of multilayer optical coatings suggests feasibility of dynamic absorption enhancement within few-nanometer-thick layers at the interfaces. Novel mechanisms of ultrafast laser-induced damage are discussed.

WA.6 • 09:20

Broadband Scattering Loss of Dispersive Mirrors, Xiaochuan Ji¹, Jinlong Zhang¹, Hongfei Jiao¹, Jianglin Dai¹, Xinshang Niu¹, Jingjing Xia¹, Xinbin Cheng¹, Zhanshan Wang¹; ¹*Tongji Univ., China.* In the resonance region of dispersive mirrors, may cause significant scattering. This study discussed broadband scattering in dispersive mirrors and validates through scattering measurements. And shows that optimizing the design may reduce broadband scattering.

WA.7 • 09:25

The Effect of Coating Thickness Error on Broadband Pulse Compression

Gratings, Zachary B. Schuberg¹, Douglas Smith¹, Dale Smith¹, Turan Erdogan¹; ¹*Plymouth Grating Laboratory Inc., USA.* Coating thickness variation affects the diffraction efficiency of MLD pulse compression gratings. Experimental coating data is examined. Simulations compare the sensitivity of different grating designs with narrow and broad bandwidths.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

10:00 -- 10:40

Room: Presidio IV

WB • Keynote Session II

Presider: Jennifer Kruschwitz; Univ. of Rochester, USA and Ric Shimshock; MLD Technologies, LLC, USA

WB.1 • 10:00 Keynote Submission

How Laser Fusion Power Generation Could Impact the Coating Industry, Christopher J. Stolz¹; ¹Lawrence Livermore National Laboratory, USA. Achieving laser fusion ignition in 2022 has been a catalyst for the creation of multiple startup power companies. Commercialization of laser fusion will have a significant impact on the precision optics coating industry.

10:40 -- 11:00

Room: Presidio IV

WC • Laser Coatings II

Presider: Jennifer Kruschwitz; Univ. of Rochester, USA and Ric Shimshock; MLD Technologies, LLC, USA

WC.1 • 10:40

Survey of Oxide Mixtures for Multilayer Dielectric Coatings for $\lambda \le 355$ nm, Carmen S. Menoni^{1,2}, Ramon Rodriguez Lopez¹, Maxwell Weiss¹, Aaron Davenport¹, Francois Schiettekatte³, Martin Chicoine³; ¹Colorado State Univ., USA; ²XUV Lasers, USA; ³Univ. of Montreal, Canada. Oxide mixtures are used to engineer ultraviolet coatings for fusion energy lasers operating at wavelengths $\lambda < 355$ nm. It is shown that oxide mixtures of HfO₂-SiO₂ and HfO₂-Al₂O₃ allow extension of the optical bandgap to energies of 6.25 eV (wavelengths as short as λ =190 nm).

WC.2 • 10:45

Distributed Light Absorption in a Biocompatible Film for High Energy Laser

Pulses, Christopher Harrison¹, Isaac Degani¹, Alex Stange¹, Matthew Sullivan¹, Jean Serrano¹, Matthias Wagner¹, Chris Cook²; ¹*Cellino Biotech, USA;* ²*Edmund Optics, USA.* To support an all-optical bioprocessing strategy for adherent stem cells, Cellino Biotech is developing a robust, light absorbing film stack that interacts with a pulsed laser.

WC.3 • 10:50

Influence of Oxygen Flow and Sub-Stoichiometry on the Optical and Damage Resistance Properties of Hafnium Oxide Thin Films, Amira Guediche¹, Saaxewer Diop¹, Raluca Negres¹, Leonardus B. Bayu Aji¹, Colin Harthcock¹; ¹Lawrence Livermore National Laboratory, USA. This study examines how oxygen flow during hafnia coating deposition by ion beam sputtering affects optical properties, film structure, and laser damage performance under nanosecond laser exposure.

WC.4 • 10:55

Preparation of Anti-Reflection Periodic Nanostructure Devices With 3ω High Laser Damage Threshold, Lidi Zhang¹, Hongfei Jiao¹, Xinshang Niu¹, Dongdong Li¹, Xiaochuan Ji¹, Jingjing Xia¹, Jinlong Zhang¹, Xinbin Cheng¹, Zhanshan Wang¹; ¹*Tongji Univ., China.* Largearea 3ω anti-reflection periodic nanostructure devices have been prepared on the surface of

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks

as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

fused quartz by HF etching, EBL, step-and-flash Nanoimprint and ICP etching. It exhibits excellent transmissivity, environmental stability and Laser-induced Damage Threshold.

13:15 -- 14:30 Room: Presidio IV WD • Metrology and Coating Properties I Presider: Garrett Cole; Thorlabs Inc, USA and Sven Schröder; Fraunhofer IOF, Germany

WD.1 • 13:15 (Invited)

Towards Renewed ISO 21254-1 and -2 Standards: Addressing Industry Needs in Laser Damage Threshold Testing, Andrius Melninkaitis¹; ¹*Vilniaus Universitetas, Lithuania.* This presentation outlines recent efforts to revise ISO 21254-1 and -2 standards, addressing industry needs in laser damage threshold testing. Focus areas include improving testing accuracy, damage criteria, and analysis methods to meet evolving laser technology challenges.

WD.2 • 13:40

Fabrication and Characterizations of an Aerogel All-Silica Mirror, Phyo P. Lin¹, Joseph Talghader¹; ¹Univ. of Minnesota, USA. Two different techniques to fabricate all-silica mirrors using dense silica and silica aerogel films were investigated. An all-silica mirror with near 100% reflectivity was built with 23 layers of PECVD dense silica and silica aerogel.

WD.3 • 13:45

Metrology of low Absorption and Photo-Induced Effects at 1.1 and 1.5 µm With Lock-in Thermography and Phase Imaging Techniques, Mathias Soulier¹, Hélène krol², Julien H. Lumeau¹, Laurent Gallais¹; ¹*Institut Fresnel, France;* ²*CILAS, France.* This study quantifies absorption and wavefront deformations in optical thin films using Lock-in Thermography (LIT) and phase imaging techniques. A finite element model simulates thermo-mechanical effects, providing insights to optimize high-power laser system performance and reliability.

WD.4 • 13:50

Thin Film Interface and Bulk Characterization via Second Harmonic Generation, Jakub Lukes^{1,2}, Vít Kanclír^{1,2}, Karel Zidek¹; ¹*TOPTEC, Inst. of Plasma Physics of the Czech Academy of Sciences, Czechia;* ²*Technical Univ. of Liberec, Czechia.* We present a method based on SHG phenomena for thin centrosymmetric film characterization. We show measurements and consequent data fitting and their comparison to simulated data. Problems and benefits of this method are discussed.

WD.5 • 13:55

Effect of Surface Modification on Properties of Porous SiO₂ High Reflection

Coating, Wenyun Du¹, Tianbao Liu¹, Jianda Shao¹, Meiping Zhu¹; ⁷Shanghai Inst. of Optics and *Fine Mechanics, Chinese Academy of Sciences, China.* Porous silica coatings are prepared using plasma ion-assisted electron beam co-evaporation and chemical etching to investigate the effect of surface modification, showing that will reduce the laser resistance of high reflection coatings.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

WD.6 • 14:00

Multi-Angle Photometric Measurements of Specular and Diffuse Samples, Scott Melis¹; ¹Agilent Technologies, USA. Automated, angle-dependent spectroscopic measurements of large wafers or multiple smaller optical components provide more data for controlling product quality. Reflectance data for specular and/or diffuse samples using the Cary Spectrophotometer's UMA are presented.

WD.7 • 14:05

Phase-Shift Interferometer Measurement of Anisotropic Stress in Wide Bandgap Zirconium Oxide Thin Films, Hong-Jie Lin¹, Hsi-Chao Chen¹, Yu Wei Chang¹, Kun-Hong Chen¹, Guan-Yi Su¹, Zheng-Zhan Hong¹, Tan-Jung Li¹; ¹*NYUST, Taiwan.* A self-made phaseshift interferometer with the 3% measured error was used to measure the anisotropic stresses of zirconium oxide (ZrO₂) film. The minimum principle and shearing stresses at are -82.98 and 26.79 MPa, respectively.

WD.8 • 14:10

Phase Coating Metrology of a Roof Prism Using Standard RT Spectrophotometer, Chris Cook¹, Gary Pajer¹; ¹Edmund Optics Inc., USA. We present on a simple technique developed to measure a phase coating using a standard RT spectrophotometer. We show results of measurements broadband phase correction coating on a (solitary) roof prism used in binoculars.

WD.9 • 14:15

Nonuniformity Metrics for Coated Circular Substrates, Eric Nybank¹, Adam Preuss¹, Jim C. Switzer¹, Markus K. Tilsch¹; ¹*Viavi Solutions Inc, USA.* We define total, radial, and azimuthal nonuniformity to describe coating nonuniformity on circular substrates. The calculations prove sensitive to details of potentially necessary interpolation. We apply the metrics on a planetary motion simulation example.

WD.10 • 14:20

Controlling Stress of Sputtered Hydrogenated Amorphous Carbon (a-C:H) for Infrared Durable Optical Coating of Chalcogenide Glass, Jonathan Pomfret^{1,2}, Sam Ahmadzadeh², Lewis Fleming², Greig Oliver², Peter Mackay¹, Des Gibson²; ¹*G&H, UK;* ²*Inst. of Thin Films, Sensors and Imaging, Univ. of the West of Scotland, UK.* Infrared optical coatings using hydrogenated amorphous carbon were deposited on chalcogenide glass. Control of the coating stress using variable hydrogen flow resulted in a durable coating with good adhesion which passes TS1888 wiper test.

15:00 -- 16:15

Room: Presidio IV WE • Deposition Technologies III Presider: Christian Mühlig; Fraunhofer IOF, Germany and Christopher Stolz; Retired, USA

WE.1 • 15:00 (Invited)

Development of Large Area Optical Coatings for Ultra-High Intensity Laser Systems in ELI, Tomas Tolenis¹; ¹*ELI Beamlines Facility ERIC, Czechia.* Abstract not available.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

WE.2 • 15:25

Gallium Oxide Nanostructures Film Synthesized via Ultra-Short Laser Pulse in-Situ Nanostructure Generation (ULPING): A Novel Approach for Optoelectronic

Applications, Nishant S. Jamwal¹, Amirkianoosh Kiani¹; ¹Ontario Tech Univ., Canada. Abstract: Gallium oxide, an emerging optoelectronic material was synthesized into nanostructures on a gallium phosphide substrate via ULPING technique. Characterization through SEM, EDX, and XPS confirmed nanostructure formation, while REELS determined the band gap as 4.8 eV.

WE.3 • 15:30

Efficient Manufacturing of Quantized Nanolaminate Multilayer Coatings, Stephan Waldner², Manuel Baertschi¹, Silvia Schwyn Thöny², Fabian Steger¹, Daniel Schachtler¹, Christoph Sturzenegger¹, Thomas Frei², Xavier Mäder³; ¹*RhySearch, Switzerland;* ²*Evatec AG, Switzerland;* ³*Laboratory for Mechanics and Nanostructures, EMPA, Switzerland.* Quantized nanolaminates (QNL) are efficiently manufactured and incorporated in multilayer designs using magnetron sputtering. In a comparison, fs-LIDT testing shows excellent performance of mirrors containing QNL, exceeding the values of designs composed of standard materials.

WE.4 • 15:35

PARMS-Based Nanolaminates for UV-Applications, Julien H. Lumeau¹, Fabien Lemarchand¹, Supratik Dasgupta²; ¹*Fresnel Institut, France;* ²*Bühler, USA.* We present a comparative study of Ta₂O₅/SiO₂ and Nb₂O₅/SiO₂ nanolaminates. They were fabricated using Plasma-Assisted Reactive Magnetron Sputtering. We show that these nanolaminates present an interesting alternative to classical high-refractive-index materials for UV applications.

WE.5 • 15:40

Optical Characterization of Si-SiO₂ **Quantizing Nanolaminates,** Joerg Terhuerne¹, Tatiana Amotchkina³, Stefan Bruns², Philipp Farr², Thomas Melzig², Michael Trubetskov^{3,4}, Michael Vergoehl²; ¹*Bte Bedampfungstechnik GmbH, Germany;* ²*Fraunhofer Inst. for Surface Engineering and Thin Films IST, Germany;* ³*OTF Studio GmbH, Germany;* ⁴*Max-Planck Inst. of Quantum Optics, Germany.* Quantizing nanolaminates are under development for use as materials with optimized properties for optical interference coatings. The optical dispersion needs another description than simply mixing the basic materials because of the bandgap shift.

WE.6 • 15:45

Quantizing Nanolaminates and Suboxides of Germanium, Cassian Bergmann¹, Morten Steinecke¹, Andreas Wienke^{1,2}, Marco Jupé^{1,2}; ¹Laser Zentrum Hannover e.V., Germany; ²Cluster of Excellence PhoenixD, Germany. Using a new coating procedure in the IBS process, hybrid quantizing nanolaminates based on Ge and TiO₂ were prepared. A refractive index of over 3.4 was measured for 1550 nm and the band gap was shifted to a wavelength of 1377 nm.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

WE.7 • 15:50

Antireflection Coatings Using Nanolaminate Layers with Intermediate Refractive

Index, Silvia Schwyn Thöny¹, Štephan Waldner¹, Manuel Baertschi², Thomas Frei¹; ¹Evatec Ltd, *Switzerland;* ²*Rhysearch, Switzerland.* We revisit antireflection coating designs with intermediate refractive index using nanolaminate layers and show in design and experiment that lower average reflection and sensitivity against thickness error can be reached compared to standard two material designs.

WE.8 • 15:55

Quantitative Scatterometry: Mapping Defects and Contamination on Optical

Surfaces, Adrien Bolliand¹, Michel Lequime¹, Claude Amra¹, Myriam Zerrad¹; ¹*Fresnel Institut, France.* A new spatially resolved scatterometer designed for the recording of up to 400\,000 elementary BRDF for a single optical component is presented. It allows quantifying the weight of defects and contamination in the scattering losses.

WE.9 • 16:00

Submicrometer Defect Detection and Classification by Angle Resolved Light

Scattering, Sven Schröder¹, Anne-Sophie Munser¹, Siyao Ma¹, Tobias Herffurth¹, Thomas Gischkat¹, Christian Mühlig^{1,2}, Andreas Tünnermann^{1,2}; ¹*Fraunhofer IOF, Germany;* ²*Inst. of Applied Physics, Friedrich-Schiller Univ., Germany.* Angle resolved light scattering is used to analyze sub-micron defects in coatings to improve performance and stability of optical components for high power laser applications.

WE.10 • 16:05

Effect of Transition Metal (Fe, Co) ion Doping on TiO2 Nano Particles and its Photonic Applications for Spintronics., kirit kumar S. Siddhapara¹; ¹Research and development, Chemight India Chemicals, India. we report the growth of [Fe, Co]xTiO2 (x=0.01,0.02&0.04) particles prepared by Sol-Gel technique. The results obtained in this research contribute to the understanding of binary doped transition metal in TiO2 nanoparticles can lead the efforts of enhancing their application in Photonic and spintronics.

Thursday, 22 May

08:15 -- 09:30

Room: Presidio IV

ThA • Applications III and Coatings for Space

Presider: James Barrie; The Aerospace Corporation, USA and Laurent Pinard; CNRS-IN2P3, France

ThA.1 • 08:15 (Invited)

Unique Optical Bench Able to Measure Spectrally the WFE of the EUCLID Dichoic

Optic, Benoit Sassolas¹, Maël Baron¹, Laurent Pinard¹, Anne Ealet¹, Guillaume Dovillaire², Patrick Grand-Chavin², Rémy Juvenal², Jérôme Legrand², Fabrice Sanson², Pierre-Antoine Frugier³, Luis M Gaspar Venancio⁴; ¹Univ Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon -LMA, France; ²Imagine Optic SA, France; ³Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, France; ⁴European Space Agency-ESTEC, Netherlands. The performance of the Euclid's dichroic mirror is impacted by its chromatic wavefront error (WFE). A bench has

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

been developed to measure the WFE according to the wavelength, the angle of incidence and the polarization.

ThA.2 • 08:40 (Invited)

Advanced Antireflective Solutions for Quantum Computing Applications Based on Transparent Conductive Nanostructures, Astrid Bingel¹, Friedrich Rickelt¹, Ulrike Schulz¹, Sven Schröder¹; ¹Fraunhofer IOF, Germany. Transparent conductive oxides face reflection losses due to high refractive index. ITO nanostructures prepared via vacuum deposition and plasma-etching, achieving low effective refractive indices and therefore excellent antireflective properties for quantum computing applications are presented.

ThA.3 • 09:05

On the Impact of Low-Energy Protons on the Optical Performance of Coated Optical Devices for Oblique Incidence Implementation, Anna Sytchkova¹, Emilio Corte², Sabereh Taghdisi Rastkar^{1,3}, Elena Nieto Hernández²; ¹ENEA Optical Coatings Group, Italy; ²Physics, Univ. of Turin, Italy; ³Information Electronics and Telecommunication Engineering, La Sapienza Univ. of Rome, Italy. R.f.-sputtered hafnia thin films were exposed to low energy protons. Good stability of the films was confirmed, while a dramatic change induced in the performance of coated optics was evidenced at certain incidence angles.

ThA.4 • 09:10

Dielectric Broadband Mirrors for Space Applications, Morten Steinecke¹, Michael Hunnekuhl¹, Marc Neufert¹, Simon Strotmann², Volker Kirschner², Andreas Wienke¹; ¹Laser Zentrum Hannover e.V., Germany; ²ESTEC, European Space Agency, Netherlands. The paper investigates purely dielectric broadband mirrors as an alternative to metallic optics for space applications. Designs, materials, and production for different space missions are presented, as well as results and advantages over metallic coatings.

ThA.5 • 09:15

Design and Development of Dichroic With Suppression of Harmonics Stopbands for Future Mars Missions, Hélène Krol¹, Xavier Buet¹, Grégory Chauveau¹, Didier Torricini¹; ¹*CILAS, France.* This paper presents the design and development of a new dichroic component for Mars missions, with a specific design that includes harmonic suppression, to improve Laser Induced Breakdown Spectroscopy (LIBS) analysis of Mars surface materials.

ThA.6 • 09:20

Fabrication of the Film with Low-Refractive Index and Lowscattering for Anti-Reflective Coating, Ryoko Suzuki¹; ¹Nikon Corporation, Japan. Porous silica thin film bearing low refractive index was successfully prepared using the sol-gel method. By careful selection of raw materials, thin films with both a low refractive index and low scattering can be fabricated.

ThA.7 • 09:25

Coronographs for Laser-Guide Star Adaptive Optics at the Starfire Optical Range, Lirong Sun^{1,2}, Lauren Schatz³, Nathan Episcopo⁴, Tod Laurvick³, Jeremiah Gaulding³, Maggie E. Lankford^{1,5}, Amy Morren^{1,2}, Mala Mateen³, Robert L. Johnson³, Michael Carter¹, Peter R. Stevenson¹, Lirong Sun²; ¹Materials and Manufacturing Directorate, Air Force Research Laboratory, USA; ²Azimuth Corporation, USA; ³Directed Energy Directorate, Air Force Research Laboratory, USA; ⁴Center for Advanced Materials Research, Univ. of Texas El Paso,

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks

as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

USA; ⁵*UES, a BlueHalo Company, USA.* We present the fabrication and characterization of coronographs for testbed evaluation at the Air Force Research Laboratory Starfire Optical Range. These coronagraphs represent photolithographically patterned fused silica substrates with anti-reflection, reflective, and absorptive multilayer coatings.

10:00 -- 11:00 Room: Presidio IV ThB • Coating Design Presider: Ludvik Martinu; Ecole Polytechnique, Canada

ThB.1 • 10:00 (Invited)

OIC Design Challenge Results, Jennifer D. Kruschwitz¹, Michael K. Trubetskov^{2,3}, Jason Keck⁴; ¹Univ. of Rochester, USA; ²Max Planck Inst. of Quantum Physics, Germany; ³OTF Studio GmbH, Germany; ⁴G5 Infrared, USA. The design problems for OIC 2025 involve a Design for Production challenge (Problem A) and an Immersed, Polarizing Notch Filter challenge (Problem B).

ThB.2 • 10:30

Reverse Engineering of Optical Coatings with a Machine Learning Algorithm, Diana Tonova¹, Michael Sundermann¹, Florent Martin², Joseph O'Leary²; ¹Carl Zeiss Jena GmbH, Germany; ²Carl Zeiss AG, Germany. In this study, a machine learning algorithm (Partial Least Squares) is successfully applied for the reverse engineering of manufactured multilayered coatings. The algorithm retrieves the coating layers thicknesses without a need of specialized expert knowledge.

ThB.3 • 10:35

Broadband Enhancement of a Vanadium Oxide Variable Emissive Multilayer, Samuel L. Dunscombe^{1,2}, Peter D. Fuqua¹, David Abraham², James Barrie¹, Aaswath Raman²; ¹*The Aerospace Corporation, USA;* ²*Materials Science and Engineering, UCLA, USA.* Vanadium dioxide based variable emissive designs demonstrated improved change of emittance through the introduction of enhancement layers. Based on this success, an optimized simulated emittance of 0.81 was achieved for future fabrication.

ThB.4 • 10:40

Advanced Multi-Objective and Robust Design Method for Optical Coatings, Jinlong Zhang¹, Ailing Pan¹, Jianglin Dai¹, Xiaochuan Ji¹, Xinshang Niu¹, Hongfei Jiao¹, Xinbin Cheng¹, Zhanshan Wang¹; ¹*Tongji Univ., China.* Two advanced optical coating design methods have been proposed and validated, including multi-objective optimization algorithms for simultaneously optimizing multiple physical properties, and robust design method for correlation manufacturing errors appear in optical monitoring.

ThB.5 • 10:40

Stopband Spacing and Count for Sawtooth Thickness Modulated Thin-Film

Designs, Bruce E. Perilloux¹; ¹BP Scientific LLC, USA. Analytical design of multilayer thin-films and stopband positions was previously investigated for sinusoidal thickness modulation. Here, the relationship of stopband spectral positions and number versus modulation period are determined for select sawtooth thickness modulation schemes.

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

ThB.6 • 10:45

Ab Initio Modeling of Thin-Film TiN: Implications for Machine Learning Optical Metasurface Design, Eric Suter^{1,2}, Lirong Sun^{2,1}, Nathan Episcopo³, Amy Morren^{1,2}, John G. Jones¹, Peter R. Stevenson¹, Eric S. Harper¹; ¹*Air Force Research Laboratory, USA;* ²*Azimuth Corporation, USA;* ³*Center for Advanced Materials Research, Univ. of Texas, USA.* We show that special quasi-random cells can be used within density functional theory to predict the optical properties of TiN think films and that metasurface inverse design via machine learning depends sensitively on these optical properties.

ThB.7 • 10:50

Unified Framework for Modeling Parameter-Dependent Optical Constants in Thin-Film Coating Design, Joseph Peeples^{1,2}, Lirong Sun^{1,2}, Angelica Drees^{1,2}, Maggie E. Lankford^{1,4}, William H. Southwell³, Peter R. Stevenson¹; ¹Materials and Manufacturing Directorate, Air Force Research Laboratory, USA; ²Azimuth Corporation, USA; ³Table Mountain Optics, USA; ⁴UES, USA. A modeling design framework is presented for variable optical property materials beyond wavelength (i.e., thickness, composition, and temperature). Our approach integrates such parameter-dependent variations within the design optimization to further advance optical thinfilm engineering.

13:30 -- 14:45

Room: Presidio IV ThC • Deposition Technologies IV

Presider: Hsi-Chao Chen; National Yunlin Univ of Science and Tech, Taiwan and Daniel Poitras; National Research Council Canada, Canada

ThC.1 • 13:30 (Invited)

Realizing Nanophotonic Effects Through Thin-Film Optical Coatings, Chunlei Guo¹; ¹Univ. of Rochester, USA. Abstract not available.

ThC.2 • 13:55 (Invited)

Development of Neutron Film Elements and Optics in IPOE, Tongji Univ., Wentao Song¹, Zhong Zhang¹, Jun Yu¹, Jialian He¹, Qiushi Huang¹, Runze Qi¹, Shengzhen Yi¹, Kun Wang¹, Xiaoqiang Wang¹, Qiya Zhang¹, Weihang Hong², Xuewu Wang², Zheng Qu³, Zhanshan Wang¹, Xiaochuan Ji¹; ¹*Tongji Univ., China;* ²*Tsinghua Univ., China;* ³*Institude of Nuclear Physics and Chemistry, China.* High-reflectivity Ni/Ti supermirrors, guiders, multi-shell nested and multi-channel focusing systems have been successfully designed and fabricated to achieve the transmission, focusing and collimation of neutron beam using direct-current magnetron sputtering and integrated assembly technology.

ThC.3 • 14:20

High Speed Atomic Layer Deposition of Broadband Antireflection Coatings Based on Nanoporous Alumina, Jani Holopainen¹, Abhishekkumar Thakur¹, Adriana V. Szeghalmi², Stephan Mingels¹, Harro Hagedorn¹; ¹Bühler Leypold Optics, Germany; ²Fraunhofer Inst. for Applied Optics and Precision Engineering IOF, Germany. Spatial ALD and hot water treatment to nanoporous alumina were used to prepare a broadband antireflection coating. High deposition rate and low average reflection below 0.01% in the visible range were achieved.

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

ThC.4 • 14:25

Two-Stage Thermal Chemical Vapor Deposition Preparation of 2D MoS₂ Modified ZnO/Cu₂O Sensing Electrode, Rong-Ling Ni¹, Hsi-Chao Chen¹, An-Hsiung Cheng¹, Kun-Zu Yin¹, Zhoun-Qing Wang¹; ¹*NYUST, Taiwan.* Two-dimensional layered molybdenum disulfide (MoS₂) was fabricated with two-step thermal chemical vapor deposition (CVD) modified Cu₂O/ZnO NRs composite electrodes on Ex-ITO. This energy gap of n-MoS₂ can match n-Zn NRs to increase the sensing intensity.

ThC.5 • 14:30

Spatial Atomic Layer Deposition: a new Revolution in Ultra-Fast Production of Conformal Optical Interference Coatings, John Rönn¹, Sauli Virtanen¹, Emmanuele Sortino¹, Philipp Maydannik¹, Sami Sneck¹; ¹Beneq, Finland. We present conformal, stress-neutral, low-loss, and durable optical interference coatings fabricated with a novel spatial atomic layer deposition that enables thin film deposition up to two orders of magnitude faster than traditional atomic layer deposition.

ThC.6 • 14:35

Plasmonic Nanoparticles for Optical Coatings, Bill Baloukas¹, Pavel Pleskunov¹, Artem Shelemin¹, Oleg Zabeida¹, Ludvik Martinu¹; ¹*Polytechnique Montréal, Canada.* The integration of plasmonic absorption in optical coatings is of interest, but far from trivial. We explore the use of a gas aggregation cluster source for the generation of silver nanoparticles and deposition of nanocomposites.

ThC.7 • 14:40

The Influence of Substrate Material and Surface Morphology on the Layer Growth via Plasma-Enhanced Atomic Layer Deposition, Jingjing Xia¹, Jinlong Zhang¹, Hongfei Jiao¹, Xinshang Niu¹, Xiaochuan Ji¹, Jingyuan Zhu¹, Siyu Dong¹, Xinbin Cheng¹, Zhanshan Wang¹; ¹*Tongji Univ., China.* Here, we discuss the influence of substrate material and its microscopic surface morphology on the optical properties and surface evolution deposited via plasma-enhanced atomic layer deposition (PEALD).

15:15 -- 16:15

Room: Presidio IV

ThD • Metal Coatings

Presider: Julien Lumeau; Fresnel Institut, France and Michael Trubetskov; Max-Planck-Institut fur Quantenoptik, Germany

ThD.1 • 15:15 (Invited)

Improvement of the Stability of Silver Thin Films by the Introduction of Nanolayers, Midori Kawamura¹; ¹*Kitami Inst. of Technology, Japan.* We have achieved high stability of a silver thin film that can withstand environmental test in high-humidity atmospheres by introducing organic monolayers or metal nanolayers on the film surface.

ThD.2 • 15:40

Low Humidity Mixed Flowing Gas Exposure of Various Silver Mirrors, Diana Alaan¹, Frank Pan², Kelsey Folgner¹, James Barrie¹; ¹*The Aerospace Corporation, USA;* ²*Lawrence Livermore, USA.* Different types of protected silver mirror samples were exposed to 220 hours

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events,

reference the online schedule.

Mixed Flowing Gas at varying humidity levels of 30%, 40%, 50%, and 70% RH to determine the effects of humidity in corrosion attack.

ThD.3 • 15:45

Design Optimization of Metal-Dielectric Bandpass Filters Using Experimentally Derived Thickness-Dependent Optical Dispersions, Maggie E. Lankford^{3,1}, Lirong Sun^{3,2}, Joseph Peeples^{3,2}, John G. Jones³, Peter R. Stevenson³; ¹BlueHalo, USA; ²Azimuth Corporation, USA; ³Materials and Manufacturing Directorate, Air Force Research Laboratory, USA. Optical bandpass filters are designed using layer thickness-dependent optimization with experimentally derived optical disperion data from complex index ultrathin metal films (≤20 nm). Improvement in passband transmission is presented while maintaining low blocking band transmission.

ThD.4 • 15:50

Smart Color Designs with Ag and Au Metal-Island Films, Tatiana Amotchkina², Michael K. Trubetskov^{1,2}, Petar Pervan³, Vesna Janicki³; ¹*Max Planck Inst. of Quantum Optics, Germany;* ²*OTF Studio GmbH, Germany;* ³*Ruder Boskovic Inst., Croatia.* Multilayer structures incorporating silver and gold metal-island films in two different embedding materials are designed to achieve the reflectance of three distinct colors. The designs are specially adjusted for micro and nanoarray fabrication.

ThD.5 • 15:55

Ag- Based Interference Filter by Plasma Assisted Reactive Magnetron Sputtering, Navas Kutty¹, Stephan Mingels¹, Harro Hagedorn¹; ¹Buhler Alzeanu GmbH,

Germany. Dielectric/Ag/dielectric based interference color filters are deposited by plasma assisted reactive magnetron sputtering (PARMS). A peak transmission of 50-55 % in RGB regions and a high optical density of 4.5 in the NIR was achieved without compromising the environmental stability criteria.

ThD.6 • 16:00

Relationship Between Synthesis Parameters, in-Situ Stress, and Optical Surface Quality of AgAl Thick Films, Vania Jiao¹, Chelsea D. Appleget¹, Scott Sitzman¹, In-Tae Bae¹, Christopher Panetta¹, James D. Barrie¹, Kelsey Folgner¹; ¹*The Aerospace Corporation, USA.* AgAl alloys were magnetron sputtered at various working pressures while monitoring insitu residual stress. Using cross-sectional TKD and surface optical measurements, the deposition parameters yielding the best optical and stress performance are identified and discussed.

ThD.7 • 16:05

Spectrally and Time Resolved Measurements of Photo-Induced Thermal Radiation of Metallic Thin-Film Coatings, François Thullier^{2,1}, Claude Amra¹, Paul Rouquette¹, Myriam Zerrad¹, Hélène KROL²; ¹*Institut Fresnel, France;* ²*CILAS, France.* We present the instrument that has been developed to perform spectrally and time resolved measurements of photoinduced thermal radiation in optical thin films. The first step was dedicated to wide band measurements in the MIR, then, narrowband filters have been implemented to obtain a calibrated instrument.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

ThD.8 • 16:10

Induced Transmission Filters with Complex Index Hydrogenated AI-Doped ZnO and Ultra-Thin Ag Films, Lirong Sun^{2,1}, John G. Jones², Peter R. Stevenson²; ¹*Azimuth Corporation, USA;* ²*Air Force Research Laboratory, USA.* Hydrogenated AI-doped ZnO (HAZO) and ultra-thin bulk-like Ag films were prepared using pulsed DC magnetron sputtering and RF etching techniques. Induced transmission filters were designed and deposited using derived optical properties.

16:30 -- 17:50 Room: Presidio IV

ThE • Metrology and Coating Properties II

Presider: Colin Harthcock; Lawrence Livermore National Laboratory, USA and Amy Rigatti; Univ. of Rochester, USA

ThE.1 • 16:30 (Invited)

OIC Measurement Challenge, Christian Mühlig¹, Florian Carstens², Thomas Gischkat¹, Andreas Wienke², Sven Schröder¹; ¹*Fraunhofer IOF, Germany;* ²*Laser Zentrum Hannover, Germany.* For the OIC Measurement Challenge, as always, a special task is given, which is challenging but at the same time also meaningful. Moreover, the problem should be accessible to a broad range of potential participants with both, standard equipment and specialized tools. This time, the goal of the Measurement Challenge (MC) is the sensitive and precise measurement of the optical losses of high-reflecting (HR) mirrors at a wavelength of 1064 nm and/or 355 nm, and an AOI of 0°.

ThE.2 • 17:00

Characterization of Laser Damage Using Cutting Edge Microstructure Analysis, Rene Feder¹, Christian Patzig¹, Christoph Sturzenegger², Daniel Schachtler², Thomas Höche¹; ¹*Fraunhofer IMWS, Germany;* ²*RhySearch, Switzerland.* Optical components for laser applications face increasing requirements on long-term and high-power stability. Understanding the root causes of damage is crucial for further improvements. The benefits of in-depth microstructure analysis are illustrated using selected results.

ThE.3 • 17:05

Aging Changes in Dynamics of ps Sonar Experiment in Thin Optical Films: Possible Sources and Consequences, Petra Veselá¹, Martina Hlubučková¹, Vít Kanclír¹, Jan Václavík¹, Karel Zidek¹; ¹toptec, IPP CAS, Czechia. We used the experimental pump&probe method of picosecond acoustics to show that the signal is prone to sample aging, partially reversible in vacuum. The aging can be eliminated by deposition of an Si₃N₄ passivation layer.

ThE.4 • 17:10

How to Accurately Measure the Performance of Optical Filters With Spatially Varying Spectral Features?, Alexandra Carrez¹, Michel Lequime¹, Myriam Zerrad¹; ¹*Institut Fresnel, France.* We present the design of an opto-mechanical tool that allows the performance of optical filters with spatially varying spectral features to be accurately measured in both their pass and stop bands.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

ThE.5 • 17:15

Characterization Method Determining Thermo-Optical Properties of Optical Thin-Films, Jonas N. Matthes¹, Marco Jupé^{1,2}, Gerd -. Hoffmann^{1,2}, Andreas Wienke^{1,2}; ¹Laser Zentrum Hannover e.V., Germany; ²Cluster of Excellence PhoenixD, Germany. A method of determining the thermal properties of thin-film filter materials from spectrophotometric measurements is proposed. Its feasibility is shown by extracting the material properties from simulated transmission spectra imprinted with real world measurement errors.

ThE.6 • 17:20

Coherent Detection of Light Backscattered From Optical Components, Michel Lequime¹, Paul Rouquette¹, Alexandra Carrez¹, Adrien Bolliand¹, Claude Amra¹, Myriam Zerrad¹; ¹*Fresnel Institut, France.* We describe an improved version of an optical bench that can characterize the amount of light backscattered by an optical component when illuminated by a single-mode Gaussian beam and that interacts coherently with this incident beam.

ThE.7 • 17:25

Sensitivity of Experimental Conditions on Inhomogeneous Tthin Film Growth, Ramon Rodriguez Lopez³, Emmanuel Villa³, Noemi Abundiz Cisneros¹, Roberto Sangines¹, Juan Aguila-Muñoz¹, Estrella Teran-Hinojosa¹, Lorena C. Cruz Gabarain³, Roberto Machorro-Mejia²; ¹CONAHCyT, Centro de Nanociencias y Nanotecnología, UNAM, Mexico; ²Centro de Nanociencias y Nanotecnología, UNAM, Mexico; The Fourier transform approximation is employed to synthesize filters with a continuously variable refractive index on a substrate. In this work, we investigate the deposition parameters involved through both numerical simulations and experimental measurements.

ThE.8 • 17:30

IR-TAMS: A New Automated Goniometer Accessory for Variable Angle Spectroscopy in Infra-red Range, Dr Aniket¹; ¹*PerkinElmer Inc., USA.* IR-TAMS is a new commercially available metrology tool for measurement of angular optical properties across the infra-red range. It offers fully automated, absolute reflectance and transmittance measurements, aiding R&D in optoelectronics and sensor design.

ThE.9 • 17:35

Anti-Reflection Coatings for Diamond Windows for Extreme Temperatures, Shay Joseph¹, Edi Shaul¹; ¹*Rafael, Israel.* Diamond is gaining increasing attention as a potential window material for optical systems set to operate under extremely high temperatures and harsh environmental conditions. This presents a tremendous challenge to develop durable anti-reflection coatings.

ThE.10 • 17:40

Reliable Characterization of SK-1300, MgF2, ZnSe, and Si Substrates in 0.2-4.2 µm Spectral Range, Tatiana Amotchkina¹, Vladislav Matusevich³, Jordi Sancho-Parramon⁴, Michael K. Trubetskov^{1,2}; ¹OTF Studio, Germany; ²Max-Planck-Inst. of Quantum Optics, Germany; ³VM-TIM GmbH, Germany; ⁴Rudjer Bošković Inst., Croatia. Reliable substrate characterization approach is proposed. Four widely used substrates SK-1300, MgF2, ZnSe, and Si were characterized in a broadband spectral range from 250-4200 nm based on multi-angle measurements. Refractive index accuracy was estimated.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

ThE.11 • 17:45

Effect of Dimethyl Phthalate Contamination on Wave Plates Fabricated by Glancing Angle Deposition, Solene Bertet¹, Marcela Mireles Ramirez², Marine Chorel¹, Eric A. Lavastre¹, Daniel Sadowski², Sara MacNally², Bruno Gallas³, Corinne Marcel⁴; ¹*CEA CESTA, France;* ²*Laboratory for Laser Energetics, USA;* ³*Institut des NanoSciences de Paris, Sorbonne Université, France;* ⁴*CEA Le Ripault, France.* The effect of dimethyl phthalate (DMP) contamination on the optical properties of wave plates fabricated by Glancing Angle Deposition are investigated. A long-term reduction of transmission and retardance is observed associated with DMP sorption.

Friday, 23 May

08:15 -- 09:30

Room: Presidio IV

FA • Coatings for Gravitational Wave Detectors

Presider: Carmen Menoni; Colorado State Univ., USA and Robert Sargent; Viavi Solutions Inc, USA

FA.1 • 08:15 (Invited)

Mirror Coatings for Interferometric Gravitational Wave Detectors, Martin M. Fejer¹; ¹*Stanford Univ., USA.* Abstract not available.

FA.2 • 08:40

Characterization and Comparison of Thin Film Stress for a Variety of Oxide Materials, Chambers, and Deposition Techniques, Ian C. Stevenson¹, Mathias Mende¹, Michael Middleton¹, Nick Smith¹, Chris Infante¹, David Ahlstrand¹, Nathan Carlie¹, Olivia Wheeler-Williams¹; ¹Edmund Optics Inc., USA. Stress has been evaluated in a variety of thin film materials, across multiple chambers, using different deposition processes. A database has been constructed that allows the prediction of stress induced figure changes for various coating and substrate combinations. The design approach can then be modified accordingly.

FA.3 • 08:45

Reduction of the Absorption Coefficient in Hydrogenated Amorphous Silicon for Gravitational Wave Interferometric Mirrors, Frances Hellman¹, Manel Molina-Ruiz¹, Ruinan Zhou¹, Ashot Markosyan², Martin M. Fejer², Aaron Davenport³, Carmen S. Menoni³; ¹UC Berkeley, USA; ²Stanford Univ., USA; ³Department of Electrical and Computer Engineering, Colorado State Univ., USA. The absorption coefficient of vapor-deposited amorphous silicon is reduced orders of magnitude at near-infrared wavelengths when hydrogenated despite low H incorporation.

Raman and ESR measurements suggest H catalyzes structural relaxation of weak Si–Si bonds.

FA.4 • 08:50

Minimization of Coating Thermal Noise in TiO₂:GeO₂ and SiO₂ High Reflector Stacks for Gravitational Wave Detectors, Aaron J. Davenport¹, Gabriele Vajente², Nicholas Demos³, Ashot Markosyan⁴, Simon Tait², Martin M. Fejer⁴, Slawek Gras³, Matthew Evans³, Carmen S. Menoni¹; ¹Colorado State Univ., USA; ²LIGO Laboratory, California Inst. of Technology,

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events,

reference the online schedule.

USA; ³LIGO Laboratory, Massachusetts Inst. of Technology, USA; ⁴E. L. Ginzton Laboratory, Stanford Univ., USA. Combining multilayer stack design, ion beam sputtered deposition process and annealing steps we demonstrate high reflectors for gravitational wave detectors operating at λ =1064 nm with low coating thermal noise and excellent optical properties.

FA.5 • 08:55

The Influence of Ti Doping and Post-Deposition Annealing on the Network Properties of Ti-Doped GeO₂ Coatings for Gravitational-Wave Detectors, Carmen S. Menoni¹, Ruth Osovsky^{1,2}, Sangita Bhowmick¹, Samuel Castro Lucas¹, Ashot Markosyan³, Martin M. Fejer³, Francois Schiettekatte⁴, Martin Chicoine⁴; ¹Colorado State Univ., USA; ²Physical Chemistry, Israel Inst. for Biological Research, Israel; ³E. L. Ginzton Laboratory, Stanford Univ., USA; ⁴Univ. of Montreal, Canada. Fourier Transformed Infrared and X-ray Photoelectron spectroscopies of amorphous GeO₂ doped with Ti reveal the evolution of the atomic network formed by Ge-O-Ge, Ti-O-Ti and Ti-O-Ge linkages in mixtures with different Ti content and with annealing. It is shown the atomic network configuration affects the onset of crystallization.

FA.6 • 09:00

GaAs/Al_{0.92}**Ga**_{0.08}**as Crystalline Coatings in Gravitational Wave Detectors,** Elizabeth G. Gretarsson¹, Andri Gretarsson¹, Ambroise Juston¹, Garrett D. Cole⁵, Gregory Harry², Steve Penn^{3,4}, Breck Meagher³; ¹*Physics and Astronomy, Embry-Riddle Aeronautical Univ., USA;* ²*Physics, American Univ., USA;* ³*Electrical Engineering and Computer Science, Syracuse Univ., USA;* ⁴*Physics, Hobart & William Smith College, USA;* ⁵*Thorlabs Crystalline Solutions, USA.* We present defect imaging and birefringence measurements of low thermal-noise GaAs/Al0:92Ga0:08As mirror coatings. We also describe nitrogen/phosophorus alloying for strain compensation and growth on offcut germanium to facilitate the use of these coatings in future gravitational wave detectors.

FA.7 • 09:05

Optical Properties of VO₂ Film Encapsulated by High- and Low-Index Oxide Layer Materials, Angelica M. Drees¹, Lirong Sun², Peter R. Stevenson², Andrew Sarangan²; ¹Univ. of *Dayton, USA;* ²*Air Force Research Laboratory, USA.* This study aims to characterize the refractive index of VO₂ phase change thin films grown on different dielectric materials and substrates, using spectroscopic ellipsometry.

FA.8 • 09:10

The Atomic Network of Ti-Doped Germania From Modeling and Experiments, Rui Zhang¹, Ruth Osovsky^{2,3}, Jun Jiang¹, James N. Fry¹, Martin M. Fejer⁴, Carmen S. Menoni³, Hai-Ping Cheng¹; ¹Department of Physics, Northeastern Univ., USA; ²Department of Physical Chemistry, Inst. for Biological Research, Israel; ³Department of Electrical and Computer Engineering, Colorado State Univ., USA; ⁴E. L. Ginzton Laboratory, Stanford Univ., USA. Atomic modeling and Raman spectroscopy of amorphous TiO₂-doped GeO₂, a LIGO mirror coating material, revealing the structure of the atomic network and the effects of density, doping, and strain.

FA.9 • 09:15

Study of Optical Losses in SiN_x and SiO_xN_y Coatings Deposited by Plasma-Enhanced Chemical Vapour Deposition for Gravitational Wave Detection, Kirstin Saunders¹, Tobias Herffurth², Simon Bublitz², Christian Mühlig², Anne-Sophie Munser², Des Gibson^{3,4}, Caspar Clark^{5,3}, Carlos Garcia Nunez¹, Sven Schröder²; ¹Univ. of Glasgow, UK; ²Fraunhofer Inst. of

Details as of 15 May 2025

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events,

reference the online schedule.

Applied Optics, Germany; ³Inst. of Thin Films Sensors and Imaging, Univ. of the West of Scotland, UK; ⁴Albasense Ltd, UK; ⁵Helia Photonics Ltd, UK. Gravitational wave detectors rely on low mechanical and optical loss mirror coatings. This work discusses optical losses through absorption and light scattering mechanisms in SiN_x and SiO_xN_y coatings deposited by plasma-enhanced chemical vapour deposition.

10:10 -- 11:05

Room: Presidio IV

FB • Coatings for AR/VR and Applications

Presider: Martin Bischoff; Qioptiq Photonics GmbH & Co KG, Germany and Markus Tilsch; Viavi Solutions Inc, USA

FB.1 • 10:10 (Invited)

Coatings for AR and VR Applications, Igor Landau¹; ¹*Opticsworks Inc., USA.* Abstract not available.

FB.2 • 10:35

Ultra-Antireflective Optical Coating With Atomic Layer Deposition, Xiangru Guo¹, Leevi Pesonen¹, John Rönn¹, Lassi Leppilahti¹, Mikael Saarniheimo¹, Sami Sneck¹; ¹Advanced ALD, Beneq, Finland. Ultra-antireflective Beneq AtomGrass[™] coatings were fabricated with Beneq P800 large batch ALD system achieving ultra-low average reflectance < 0.1% in wavelength range 400 - 700 nm at wide angles of incidence 7° - 40°.

FB.3 • 10:40

Hard Antireflection Coatings for Consumer Electronics, Yu-Si Wang¹, Weidong Shen¹; ¹*Zhejiang Univ., China.* This paper proposes a hard AR coating design using a "fence" optical approach to meet the growing demand for durable coatings in consumer electronics.

FB.4 • 10:45

Liquid Crystal and Two-Dimensional Material Optical Nanocomposite Thin Films, Urice Tohgha^{1,2}, Michael A. Susner¹, Michael Mcconney¹, Peter R. Stevenson¹; ¹Materials and Manufacturing directorate, USA; ²Azimuth corporation, USA. We present the facile preparation of uniform nanocomposites of 2D nanomaterials in cholesteric liquid crystals using compatible materials. Here, we illustrate films with tunable and fixed optical properties that can be optimized to realize desired characteristics.

FB.5 • 10:50

Gasochromic Properties of Tungsten Oxide Thin Films Prepared by Glancing Angle Deposition With Electron Beam Evaporation, Wiktoria Wichbrodt¹, Jaroslaw Domaradzki¹, Des Gibson², Michal Mazur¹; ¹*Faculty of Electronics, Photonics and Microsystems, Wroclaw Univ. of Science and Technology, Poland;* ²*Inst. of Thin Films, Sensors and Imaging, Univ. of the West of Scotland, UK.* This work presents gasochromic properties of WO₃ thin films deposited by GLAD technique using EBE and shows the influence of the deposition angle on the change of transmission coefficient upon exposure to hydrogen.

Disclaimer: this guide is limited to technical program with abstracts and author blocks as of 15 May 2025. For updated and complete information with special events, reference the online schedule.

FB.6 • 10:55

Study of Deposition Parameters of Silicon Oxide and Silicon Nitride Thin Films Synthesized by Pulsed-Direct Current Reactive Magnetron Sputtering, Lorena C. Cruz Gabarain¹, Roberto Sangines², Noemi Abundiz Cisneros², Estrella Teran-Hinojosa³, Roberto Machorro²; ¹*CICESE, Mexico;* ²*UNAM, Mexico;* ³*CONAHCYT, Mexico.* This work shows the results of a characterization protocol to synthesize silicon dioxide and nitride films by Pulsed sputtering using optical emission spectroscopy to monitor plasma and correlate to the thin films optical properties.

FB.7 • 11:00

Functionalized Hybrid POSS-Based Films for Optical Applications, Oleg Zabeida¹, Pedro Avila¹, Jolanta Klemberg-Sapieha¹, Ludvik Martinu¹; ¹*Polytechnique Montréal, Canada.* Ion-assisted thermal evaporation was used to deposit polyhedral oligomeric silsesquioxane (POSS) films using different precursors containing specific functional groups. Their optical, mechanical, and functional properties have been fine-tuned by adjusting the ion assistance.