

Enabling smart vision through meta-optics

Dragomir Neshev

ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS) Research School of Physics Australian National University Canberra, Australia

Enabling Smart Vision Through Meta-Optics

- Laura Valencia Molina, Sarah Dean, Rocio Camacho Morales, Josephine Munro, Jihua Zhang, Hoe Tan, C. Jagadish, Andrey Sukhorukov
 Robert Sharp, Tony Travouillon, Israel Vaughn, Andrew Kruse Australian National University, Canberra, Australia
- Lei Xu, Mohsen Rahmani
 Nottingham Trent University, UK
- Andrey E. Miroshnichenko UNSW, Canberra, Australia
- Isabelle Staude Friedrich Schiller University of Jena

ARC Centre of Excellence for Transformative Meta-Optical Systems

Australian National Fabrication Facility

Vision and vision systems

The available systems only measure intensity or timing

Hidden properties of light

How to detect them?

Replacing bulky glass optical elements

- The lens limits the thickness of OSs
- The number of lenses is limited

Metasurfaces can miniaturise optical components while adding new functionalities for detection of the hidden properties of light

🧱 Metasurfaces: driven by resonances 💥

Metasurfaces are subwavelength arrays of nano-scale optical elements

Functions of metasurface

Neshev & Miroshnichenko, Nature Photon. 17, 26 (2023)

7

Neshev & Miroshnichenko, Nature Photon. 17, 26 (2023)

Merging optics and chip-making

Fabrication of metasurfaces is compatible and similar to chip making – planar nanofabrication

Chen et al., Nature Nanotech. 13, 220 (2018)

Meta-optical elements

Metasurfaces of different geometries and different materials

From realism to sur-realism and different materials

Neshev & Miroshnichenko, Nature Photon. 17, 26 (2023)

Resonances in metasurfaces

Mie resonances in dielectric particles

Lattice resonances in metasurfaces

$$\frac{2\pi}{\lambda}n_{eff} = \frac{2\pi}{a}$$

waveguide mode resonance

Bound state in the continuum (BIC)

Hsu, et al., Nat. Rev. Mat., 1, 16048, (2016)

E&M resonances in dielectric MSs

Silicon nanodisk metasurface (h = 220 nm, variable radius) in n = 1.66 medium.

- Complete crossing of electric and magnetic resonances is achieved (Huygens condition)
- Transmittance becomes unity for resonance overlap

Decker *et al.*, Adv Opt Mat **13**, 813-820 (2015)

Phase encoding by size scaling

Phase encoding (in x and y) by varying the size at Huygens condition

Can encode any phase profile with high transmission

Detection of hidden properties of light

Polarisation imaging for Earth observations

Metasurface polarisation imaging

Single-shot polarisation imaging: Capasso (Harvard), Faraon (Caltech), etc.

E. Arabi et. al 2018 (Faraon Group) https://doi.org/10.1021/acsphotonics.8b00362

ffracted order

N. A. Rubin et al (Capasso Group) https://doi.org/10.1364/OE.450941

J. Zuo et. al. 2023 (MetaPolarIm) https://doi.org/10.1038/s41377-023-01260-w

Remote sensing requires additional considerations for satellite movement and field-of-view, low-light imaging, and error accumulation

Polarisation remote sensing

Original

Image: Tektonex https://www.tektonex.com/capabilities/

- Filtering or extracting water reflections from an image
- Detecting chiral organic aerosols

Image: Polarizing filter (photography). (2021, December 19). In Wikipedia. https://en.wikipedia.org/wiki/Polarizing filter (photography)

Polarisation Remote Sensing

In orbiting satellites, we can take advantage of the satellite movement: *a narrow imaging strip is used to form a complete image over time.*

Full-Stokes imaging optics is bulky and heavy, often with moving parts, unsuitable for small form-factor satellites

A metasurface can be placed within an existing small-satellite imaging system, allowing for full polarisation imaging

Images: NASA, image ID AS17-148-22727; Rob Sharp, CHICO hyperspectral sensor.

Satellite imaging design

Metasurface diffracting in one dimension can form polarisation measurements of the imaging strip without losing light to filtering and efficiently using the sensor space

Four polarisation measurements are required to reconstruct the full Stokes polarisation state.

Five measurements allow multiple reconstructions for error monitoring.

Dean et al., in preparation (2024)

Metasurface inverse design (topology optimisation)

Polarisation imaging simulation

Simulating a 2.23 × 0.44 mm metasurface for a polarised input results in 5 diffraction orders with polarisation-dependent images at the camera sensor

Polarisation imaging simulation

Reconstructing the simulated camera measurements demonstrate the resolution achievable with the 2.23mm by 0.44 mm metasurface

Dean et al, in preparation (2024)

Fabricated test samples

Measured test diffraction pattern

Ongoing ...

Images: Dr. Josephine Munro

Phase measurements for telescope wavefront correction

Phase detection with metasurfaces

Imaging of 4-µm-thick breast tissue

Balaur et al. Nat. Photonics 15, 222 (2021)

Wesemann et al., Light Sci Appl 10, 98 (2021)

MOS

Wavefront distortion by the atmosphere

Atmosphere is an inhomogeneous, due to temperature differentials and wind velocities

https://commons.wikimedia.org/w/index.php?curid=15279464

Philipp Salzgeber [1] -

http://salzgeber.at/astro/moon/seeing.html

https://commons.wikimedia.org/w/index.php?curid=483783

Adaptive optics for aberration correction

Adaptive optics system measures and corrects atmospheric aberrations

Shack-Hartmann wavefront sensor

https://commons.wikimedia.org/w/index.php?curid=15278814

Tokunaga, 2014. Chapter 51-New Generation Ground-Based Optical/ Infrared Telescopes. *Encyclopedia of the Solar System (Third Edition)*

Future Extremely Large Telescopes

Giant Magellan Telescope - GMTO Corporation

Giant Magellan Telescope D = 25.4m Late 2020s estimated completion

Swinburne Astronomy Productions/ESO - ESO,

European Extremely Large Telescope D = 39.3m 2028 estimated completion

TMT Observatory Corporation, Attribution

Thirty Meter Telescope D = 30m Significant construction issues

What does extremely large optics have to do with extremely small optics?

Elongations of Sodium laser guide stars

Detectors with a very large number of pixels are needed to avoid truncation; but speed, computation power, and SNRs are compromised

Varying elongation on the wavefront sensor. Custom anamorphic compression extremely difficult with conventional optics

Position dependent elongation (ϵ) on detector

Bilayer meta-lenslet array

Can a meta-lenslet array be used for laser guide star wavefront sensing?

Requirements:

- Anamorphic compression ratios between 1:1 and 1:10
- Wavelength 589 nm
- Subaperture size 150-500µm
- Effective focal length 2-20mm
- Parfocal operation; will require a bilayer (two metasurfaces)

Metasurface design and modelling

Optical system layout and modelling

••••••

Anamorphic MS optical performance

Infrared imaging by up-conversion to visible

Infrared imaging

Infrared imaging enables non-destructive analysis of objects and materials, with applications in surveillance, agriculture, and medical diagnosis.

When compared with visible cameras

- Bulky and expensive
- Lower resolution
- Environmental interference, high noise
- Reduced light range.

Nonlinear up-conversion and metasurfaces

Use Nonlinear Optics to convert the IR light to visible

Old idea: Midwinter, Appl. Phys. Lett. 12, 68 (1968)
 Requires bulky NL crystals, high-power lasers, low conversion

Nonlinear metasurfaces ?Ultra-thin and ultra-lightFully transparentFlexibleMulticolour IR vision

Metasurfaces for nonlinear enhancement

Meta-optical frequency mixer

Enhanced SHG

Continuous Wave SHG

Liu et al., Nat Commun. **9**, 2507 (2018)

Fedotova et al., Nano Lett. **20**, 8608 (2020)

Anthur et al., Nano Lett. **20**, 8745 (2020)

Metasurface up-converted IR imaging

Visible images from target, captured on CCD camera

efficiency 1.6 × 10^{-6} @ $I_p = 0.78 \text{ GW/cm}^2$

Novel IR imaging at room temperature: potential applications in night vision.

Challenges:

- 1. Low Q-factor of the resonances
- 2. High absorption at the visible wvl.
- 3. Low transparency for the visible

High-Q Lithium Niobate MS for up-conversion

••••••

Liner properties of LiNbO₃ metasurface

SEM images of the MS

Linear transmission as a function of incident angle and wavelength

The IR transmission spectrum shows a strong dispersion of the resonance with angle – *How to upconvert different spatial frequencies?*

Measured second-order nonlinear emission

Metasurface up-conversion imaging experiment 💥 TMOS

Infrared up-conversion imaging by the MS

Conclusions and outlook

Meta-optics offers new **opportunities over conventional bulk optics**:

- Improved SWaP (Size, Weight and Power)
- Complex functions implemented on a single metasurface

Challenge: limited bandwidth of operation

6000 8000 10000 12 ■ nair ■ nsilicon

Inverse design for

polarisation imaging

12000nm

Australian National University

TMOS

##