

Generation and Characterization of Structured Partially Coherent Light

Paulo Henrique Souto Ribeiro GIQSUL – Department of Physics Federal University of Santa Catarina Florianópolis

February, 2025

Florianópolis, SC

GIQSUL at UFSC Group of Quantum Information

Optical Processing Laboratory

Quantum Optics Laboratory

GIQSUL Research

- Transverse Spatial Entanglement with Parametric Downconversion Spatial correlations in parametric down-conversion, Walborn et al., Physics Reports 495, 87-139 (2010)
- Quantum Computing Theory (Duzzioni team)
 Quantum computation in continuous time using dynamic invariants, Sarandi et al., Physics Letters A, 375, 3343-3347 (2011)

- Nonlinear Optics

Conservation of orbital angular momentum in stimulated downconversion, Caetano et al. Phys. Rev. A 66, 041801(R) (2002)

- Optical Processing

An optical processor for matrix-by-vector multiplication: an application to the distance geometry problem in 1D, Hengeveld et al. Journal of Optics 24, 015701 (2021)

<u>Outline</u>

- Introduction to optical coherence
- The Gaussian Schell Model Beam (GSM)
- The Twisted Gaussian Schell Model Beam (TGSM)
- Motivation for TGSM beams
- Generation of TGSM beams
- Quantum effects with TGSM beams
- StimPDC with TGSM beams
- Conclusions and perspectives

Temporal and transverse spatial coherence

Measuring transverse spatial coherence with double-slit interference

Coherence and Double-slit interference

d

Almost monochromatic light ~ single frequency

Intensity distribution

 $k = 2\pi/\lambda$

$$I(p) = I_0(y)(1 + |\mu_{12}| \cos[k(d_2 - d_1) + \varphi])$$

$$x^{2} = \sqrt{x^{2} + \left(y - \frac{h}{2}\right)^{2}}; d_{2} = \sqrt{x^{2} + \left(y + \frac{h}{2}\right)^{2}}$$

 μ_{12} Normalized degree of mutual coherence

Van Cittert-Zernike theorem

Van Cittert-Zernike theorem

$$\mu_{12}[(x_2 - x_1), (y_2 - y_1)] = \frac{e^{i\alpha_{12}} \int_{\sigma} dx_0 dy_0 I(x_0, y_0) e^{i\frac{k}{R}[x_0(x_2 - x_1) + y_0(y_2 - y_1)]}}{\int_{\sigma} dx_0 dy_0 I(x_0, y_0)}$$

The Gaussian Schell Model (GSM)

THE MULTIPLE PLATE ANTENNA

ЪУ

ALLAN CARTER SCHELL

- S.B., Massachusetts Institute of Technology (1956)
- S.M., Massachusetts Institute of Technology (1956)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY September, 1961 THE MULTIPLE PLATE ANTENNA

Ъy

ALLAN CARTER SCHELL

Submitted to the Department of Electrical Engineering on August 21, 1961 in partial fulfillment of the requirements for the degree of Doctor of Science

A Sketch of a Multiple Plate Radio Astronomy Antenna

The Gaussian Schell Model (GSM) beams

GAUSSIAN SCHELL-MODEL BEAMS

Leonard Mandel · Emil Wolf Editors

Ronald J. Sudol

Department of Physics and Astronomy University of Rochester, Rochester, N.Y. 14627, USA

Ari T. Friberg

Department of Technical Physics Helsinki University of Technology SF-02150 Espoo 15, Finland

> Proceedings of the Fifth Rochester Conference on Coherence and Quantum Optics held at the University of Rochester, June 13-15, 1983

The Gaussian Schell Model (GSM) beams

In the Schell-model approximation the source cross-spectral density function takes the form

$$W(\underline{\rho_{1}}, 0; \underline{\rho_{2}}, 0) = [I(\underline{\rho_{1}}, 0)I(\underline{\rho_{2}}, 0)]^{\frac{1}{2}} \mu(\underline{\rho_{1}} - \underline{\rho_{2}}; 0)$$

GAUSSIAN SCHELL-MODEL BEAMS

Ronald J. Sudol

Department of Physics and Astronomy University of Rochester, Rochester, N.Y. 14627, USA

Ari T. Friberg

Department of Technical Physics Helsinki University of Technology SF-02150 Espoo 15, Finland

 $I(\rho, 0) = A \exp\{-\rho^{2}/2\sigma_{I}^{2}\}\$ $\mu(\rho'; 0) = \exp\{-\rho'^{2}/2\sigma_{I}^{2}\}\$

Fig. 1. The behavior of the beam radius w(z) and the radius of curvature R(z) of a Gaussian Schell-model beam as a function of the dimensionless variable $\xi = \lambda \pi / \pi w_0^2$ for several values of the parameter $\alpha = \sigma_{\mu}/2\sigma_I$. The region $\alpha << 1$ correspond to globally incoherent beams (Gaussian quasi-homogeneous beams), whereas the limit $\alpha \rightarrow \infty$ represents a fully coherent Gaussian laser beam.

The Gaussian Schell Model (GSM) beams

Fig. 1. The behavior of the beam radius w(z) and the radius of curvature R(z) of a Gaussian Schell-model beam as a function of the dimensionless variable $\xi = \lambda \pi / \pi w_0^2$ for several values of the parameter $\alpha = \sigma_{\mu}/2\sigma_{I}$. The region $\alpha << 1$ correspond to globally incoherent beams (Gaussian quasi-homogeneous beams), whereas the limit $\alpha \rightarrow \infty$ represents a fully coherent Gaussian laser beam.

R. Simon and N. Mukunda

Vol. 10, No. 1/January 1993/J. Opt. Soc. Am. A 95

Twisted Gaussian Schell-model beams

Rajiah Simon

Narasimhaiengar Mukunda

R. Simon and N. Mukunda Vol.

Vol. 10, No. 1/January 1993/J. Opt. Soc. Am. A 95

Twisted Gaussian Schell-model beams

We may ask, What is the most general Gaussian crossspectral density (in a transverse plane) that is invariant under arbitrary rotations about the z axis? The answer

$$\begin{split} E(\boldsymbol{\rho}_1, \boldsymbol{\rho}_2) &= a_1({\rho_1}^2 + {\rho_2}^2) + \gamma \boldsymbol{\rho}_1 \cdot \boldsymbol{\rho}_2 \\ &+ i a_2({\rho_1}^2 - {\rho_2}^2) + i a_3 \boldsymbol{\rho}_1 \wedge \boldsymbol{\rho}_2 \\ &= (a_1 + \gamma/2)({\rho_1}^2 + {\rho_2}^2) - (\gamma/2)(\boldsymbol{\rho}_1 - \boldsymbol{\rho}_2)^2 \\ &+ i a_2({\rho_1}^2 - {\rho_2}^2) + i a_3 \boldsymbol{\rho}_1 \wedge \boldsymbol{\rho}_2, \end{split}$$

$$\rho \wedge \rho' = xy' - yx'$$
$$= \rho \cdot \epsilon \rho'$$
$$\epsilon = i\sigma_2 = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}$$

R. Simon and N. Mukunda

Vol. 10, No. 1/January 1993/J. Opt. Soc. Am. A 95

Twisted Gaussian Schell-model beams

Using optically defined parameters

$$W_{z}(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}; \nu) = \frac{I(\nu)}{2\pi\sigma_{s}(\nu)^{2}} \\ \times \exp\left[\frac{-1}{4\sigma_{s}(\nu)^{2}}(\boldsymbol{\rho}_{1}^{2} + \boldsymbol{\rho}_{2}^{2}) - \frac{(\boldsymbol{\rho}_{1} - \boldsymbol{\rho}_{2})^{2}}{2\sigma_{g}(\nu)^{2}} \\ \times \frac{-i}{2\chi R(\nu)}(\boldsymbol{\rho}_{1}^{2} - \boldsymbol{\rho}_{2}^{2}) - i\frac{u(\nu)}{\chi}\boldsymbol{\rho}_{1} \cdot \boldsymbol{\epsilon}\boldsymbol{\rho}_{2}\right].$$
(2.2)

I is the intensity ∞_{s} is the beam width ω_{g} is the coherence length

R is radius of curvature

u is the twist phase parameter

$$\chi = \lambda/2\pi$$

Twisted Gaussian Schell-model beams

Effects on divergence

Effect on the propagation phase

The Twisted Gaussian Schell Model (TGSM) beams illustrating beam rotation

Article

Statistical Characteristics of a Twisted Anisotropic Gaussian Schell-Model Beam in Turbulent Ocean

Yonglei Liu ^{1,2}, Yuefeng Zhao ^{1,2}, Xianlong Liu ^{1,2}, Chunhao Liang ^{1,2}, Lin Liu ³, Fei Wang ³ and Yangjian Cai ^{1,2,3,*}

Photonics **2020**, *7*, 37; doi:10.3390/photonics7020037

photonics

TGSM beams motivation

Classical Optics: Robustness against Propagation in turbulent media

F. Wang and Y. Cai, "Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere," *Opt. Express*, vol. 18, p. 24661, 2010.

M. Zhou, W. Fan, and G. Wu, "Evolution properties of the orbital angular momentum spectrum of twisted Gaussian Schell-model beams in turbulent atmosphere," *J. Opt. Soc. Am. A*, vol. 37, p. 142, 2020.

Y. Liu, X. Liu, L. Liu, F. Wang, Y. Zhang, and Y. Cai, "Ghost imaging with a partially coherent beam carrying twist phase in a turbulent ocean: a numerical approach," *Appl. Sci.*, vol. 9, 2019, Art no. 3023.

Quantum Optics: Robustness against Propagation in turbulent media

Samukelisiwe Purity Phehlukwayo , Marie Louise Umuhire , Yaseera Ismail, Stuti Joshi , and Francesco Petruccione , Influence of coincidence detection of a biphoton state through free-space atmospheric turbulence using a partially spatially coherent pump, Phys. Rev. A 102, 033732 (2020)

> Quantum Optics: Boosting quantum entanglement

L. Hutter, G. Lima, and S. P. Walborn, "Boosting entanglement generation in down-conversion with incoherent illumination," *Phys. Rev. Lett.*, vol. 125, p. 193602, 2020.

1818 J. Opt. Soc. Am. A/Vol. 11, No. 6/June 1994

Interpretation and experimental demonstration of twisted Gaussian Schell-model beams

Ari T. Friberg, Eero Tervonen, and Jari Turunen

Department of Technical Physics, Helsinki University of Technology, FIN- 02150 Espoo, Finland

Fig. 1. Astigmatic optical lens system used for converting an anisotropic GSM beam into a twisted GSM beam.

Fig. 5. Experimental arrangement: AOD, acousto-optic deflector; L_1 and L_2 , spherical lenses; C_1-C_6 , cylindrical lenses; S, spatial filter.

Fig. 1. Experimental setup for generating a TGSM beam. DPSS, diode-pumped solid-state laser; BE, beam expander; RM, reflecting mirror; CL₀, CL₁, CL₂, CL₃, and CL₄, thin cylindrical lenses;

RGGD, rotating ground glass disk; L_1 , L_2 , and L_3 , thin lenses; SLM, spatial light modulator; CA, circular aperture; CCD, charge-coupled device; PC₁ and PC₂, personal computers.

RM

DE GRUYTER

Nanophotonics 2022; 11(4): 689-696

გ

Research Article

Haiyun Wang, Xiaofeng Peng, Hao Zhang, Lin Liu*, Yahong Chen*, Fei Wang* and Yangjian Cai*

Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum

DE GRUYTER

Nanophotonics 2022; 11(4): 689-696

9

Research Article

Haiyun Wang, Xiaofeng Peng, Hao Zhang, Lin Liu*, Yahong Chen*, Fei Wang* and Yangjian Cai*

Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum

SLM movie method for generating TGSM beams

Parametric Down-conversion

Spatial Entanglement Can Be Measured And Witnessed

Spatial Entanglement Can Be Witnessed

Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller Phys. Rev. Lett. 84, 2722 (2000).

DGCZ criterion

MGVT criterion

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi Phys. Rev. Lett. 88, 120401 (2002).

Spatial Entanglement Can Be Measured And Witnessed

Incoherence degrades spatial correlations

PHYSICAL REVIEW A 99, 053831 (2019)

Spatially entangled photon-pair generation using a partial spatially coherent pump beam

Hugo Defienne* and Sylvain Gigan

Pumping SPDC with partially coherent pump

PHYSICAL REVIEW A 102, 033732 (2020)

Influence of coincidence detection of a biphoton state through free-space atmospheric turbulence using a partially spatially coherent pump

Samukelisiwe Purity Phehlukwayo¹, Marie Louise Umuhire¹, Yaseera Ismail,^{1,*} Stuti Joshi^{2,†} and Francesco Petruccione^{1,3,‡}

Incoherence degrades spatial correlations

Research Article

Vol. 27, No. 15 | 22 Jul 2019 | OPTICS EXPRESS 20745

Optics EXPRESS

Influence of pump coherence on the generation of position-momentum entanglement in optical parametric down-conversion

WUHONG ZHANG,^{1,2} ROBERT FICKLER,^{2,3} ENNO GIESE,^{2,4,6} LIXIANG CHEN,^{1,7} AND ROBERT W. BOYD^{2,5}

TGSM beam pumping can increase entanglement!

PHYSICAL REVIEW LETTERS 125, 193602 (2020)

Boosting Entanglement Generation in Down-Conversion with Incoherent Illumination

Lucas Hutter^{1,2} G. Lima,^{3,4} and S. P. Walborn^{1,3,4}

A TGSM beam is therefore uniquely characterized by its CM [23,24]:

$$T = \begin{pmatrix} \sigma^2 & -\frac{k\sigma^2}{R} & 0 & ku\sigma^2 \\ -\frac{k\sigma^2}{R} & \tau^2 & -ku\sigma^2 & 0 \\ 0 & -ku\sigma^2 & \sigma^2 & -\frac{k\sigma^2}{R} \\ ku\sigma^2 & 0 & -\frac{k\sigma^2}{R} & \tau^2 \end{pmatrix}.$$
 (1)

 σ is the beam waist

 $\tau^2 = (1/\delta^2) + (1/4\sigma^2) + k^2[(\sigma^2/R^2) + u^2\sigma^2)]$

is the variance of the wave vector distribution.

 δ is the transverse coherence length,

TGSM beam pumping can increase entanglement!

Two-photon covariance matrix

 $V_{12} = \begin{pmatrix} A & C \\ C^T & B \end{pmatrix}, \tag{4}$

A (B) refer to photon 1 (2) A = B

$$A = \begin{pmatrix} \sigma^2 + \sigma_-^2 & -\frac{k\sigma^2}{2R} & 0 & \frac{ku\sigma^2}{2} \\ -\frac{k\sigma^2}{2R} & \frac{1}{4}(\tau^2 + \Delta_-^2) & -\frac{ku\sigma^2}{2} & 0 \\ 0 & -\frac{ku\sigma^2}{2} & \sigma^2 + \sigma_-^2 & -\frac{k\sigma^2}{2R} \\ \frac{ku\sigma^2}{2} & 0 & -\frac{k\sigma^2}{2R} & \frac{1}{4}(\tau^2 + \Delta_-^2) \end{pmatrix}$$

L is the length of the crystal

$$\sigma_{-}^2 = 9L/10k$$

 $\Delta^2 = 3k/2L$

$$C = \begin{pmatrix} \sigma^2 - \sigma_-^2 & -\frac{k\sigma^2}{2R} & 0 & \frac{ku\sigma^2}{2} \\ -\frac{k\sigma^2}{2R} & \frac{1}{4}(\tau^2 - \Delta_-^2) & -\frac{ku\sigma^2}{2} & 0 \\ 0 & -\frac{ku\sigma^2}{2} & \sigma^2 - \sigma_-^2 & -\frac{k\sigma^2}{2R} \\ \frac{ku\sigma^2}{2} & 0 & -\frac{k\sigma^2}{2R} & \frac{1}{4}(\tau^2 - \Delta_-^2) \end{pmatrix}$$

The symplectic eigenvalues of Eq. (4) are twofold degenerate and given by [37]

$$\lambda_{\pm} = \frac{1}{\sqrt{2}} \left| \sqrt{a_{\pm} \pm \sqrt{4k^2 \Delta_{-}^2 \sigma_{-}^2 \sigma_{-}^4 \left(u^2 \pm \frac{1}{R^2}\right) + a_{-}^2}} \right|, \quad (8)$$

Entanglement is confirmed when $\lambda_{-} < 1/2$ (gray horizontal plane). The SPDC parameters are $R = \infty$, $\lambda_p = 400$ nm, $\sigma_p = 50 \ \mu$ m, and L = 1 cm. (b) Profile plots of λ_{-} for normalized twist phase $|u|/k\delta^2$ equal to zero (black solid line), 1 (red solid line), and 1/2 (blue dashed line). The dotted black curve is the near-field and far-field entanglement criteria (7).

Research Article

Gustavo H. dos Santos, Andre G. de Oliveira, Nara Rubiano da Silva, Gustavo Cañas, Esteban S. Gómez, Stuti Joshi, Yaseera Ismail, Paulo H. Souto Ribeiro and Stephen Patrick Walborn*

Phase conjugation of twisted Gaussian Schell model beams in stimulated down-conversion

Partially coherent StimPDC

StimPDC with twisted Schell-model beams

$$W_i(\mathbf{r},\mathbf{r}') = W_p(\mathbf{r},\mathbf{r}')W_s^*(\mathbf{r},\mathbf{r}').$$

$$W_{i}(\mathbf{r},\mathbf{r}') = A e^{-\frac{r^{2}+r'^{2}}{4w_{i}^{2}}} e^{-\frac{(\mathbf{r}-\mathbf{r}')^{2}}{2\delta_{i}^{2}}} e^{-ik_{i}\frac{(\mathbf{r}-\mathbf{r}')^{2}}{2R_{i}}} e^{-ik_{i}\mu_{i}(xy'-yx')},$$

$$\frac{k_i}{R_i} = \frac{k_p}{R_p} - \frac{k_s}{R_s},$$

$$k_i\mu_i=k_p\mu_p-k_s\mu_s,$$

 $\delta_s^2 \delta_p^2$

Experiment

Pump @ 405 nm Seed @ 780 nm Idler @ 840 nm

Results

Far field variance x degrade of coherence

Far field variance

$$\sigma_{\rm ff}^2 = \left(\frac{1}{4w^2} + \frac{k^2w^2}{R^2}\right) + \frac{1}{\delta^2} + \frac{\tau^2w^2}{\delta^4},$$

Visibility in a double-slit interference

Visibility x degree of coherence

Transfer and conjugation of twist phase

$$I(\mathbf{r}) \approx \left[1 + \mathrm{e}^{-\frac{2d^2}{\delta^2}} \cos\left\{2dk\left(\frac{y}{f} - \mu x\right)\right\}\right]$$

Twist in the fringe pattern

Journal of Optics

J. Opt. 24 (2022) 094004 (8pp)

Evaluation of twisted Gaussian Schell model beams produced with phase randomized coherent fields

G Cañas^{1,2}⁽ⁱ⁾, E S Gómez^{2,3}, G H dos Santos⁴⁽ⁱ⁾, A G de Oliveira⁴, N Rubiano da Silva⁴, Stuti Joshi⁵, Yaseera Ismail⁶, P H S Ribeiro^{4,*}⁽ⁱ⁾ and S P Walborn^{2,3,*}

Far field mean variance versus coherence length

IOP Publishing

Journal of Optics

J. Opt. 24 (2022) 094004 (8pp)

https://doi.org/10.1088/2040-8986/ac8562

Residual coherence in SLM movie methods

PHYSICAL REVIEW APPLIED 20, 024007 (2023)

Partial Coherence and Coherence Length in Stimulated Parametric Down-Conversion

G.H. dos Santos⁽⁰⁾,^{1,*} R.C. Souza Pimenta⁽⁰⁾,¹ R.M. Gomes,² S.P. Walborn,^{3,4,†} and P.H. Souto Ribeiro^{1,‡}

TABLE I. Normalized intensity of the stimulated component and ϵ -coherence lengths obtained for different seed beam intensities.

Iseed (µW)	β (%)	$\epsilon = 1/e$ (µm)	$\epsilon = 1/2$ (µm)	$\epsilon = 7/8$ (µm)
0	0	29.30	24.40	10.71
90	4.9 ± 3.5	30.64	25.32	11.00
270	13.9 ± 2.7	33.74	27.32	11.61
540	20.5 ± 2.5	36.88	29.17	12.12
3000	44.9 ± 1.8	∞	45.30	14.87
10 700	76.0 ± 1.7	∞	∞	25.12

Contents lists available at ScienceDirect

Optics and Laser Technology

journal homepage: www.elsevier.com/locate/optlastec

Optics & Laser Technology

Full length article

Anomalous second harmonic generation of twisted Gaussian Schell model beams

M. Gil de Oliveira ^{a,*}, A.L.S. Santos Junior ^a, A.C. Barbosa ^a, B. Pinheiro da Silva ^a, G.H. dos Santos ^b, G. Cañas ^{c,d}, P.H. Souto Ribeiro ^b, S.P. Walborn ^{c,e}, A.Z. Khoury ^a

Contents lists available at ScienceDirect

Optics and Laser Technology

journal homepage: www.elsevier.com/locate/optlastec

Full length article

Anomalous second harmonic generation of twisted Gaussian Schell model beams

M. Gil de Oliveira ^{a,*}, A.L.S. Santos Junior ^a, A.C. Barbosa ^a, B. Pinheiro da Silva ^a, G.H. dos Santos ^b, G. Cañas ^{c,d}, P.H. Souto Ribeiro ^b, S.P. Walborn ^{c,e}, A.Z. Khoury ^a

Conclusions

Partial coherence GSM and TGSM beams

TGSM beams: applications to communication through turbulent medium

TGSM and SPDC applications to quantum systems TGSM and wavelength conversion in StimPDC

StimPDC as a design for SPDC experiments in quantum regime

Perspectives

Testing twist conservation in nonlinear parametric interactions

Testing experimentally the use of TGSM to boost the entanglement

Using TGSM beams in optical communication REDE RIO QUÂNTICA (A. Z. Khoury)

Whenk you!

	Infrared			Green		
$\tau = -1$	$\tau = 0$	$\tau = 1$	$\tau = -1$	$\tau = 0$	$\tau = 1$	1.0
						0.8
9						
						sity (a.
•••			-		-	0.4 ^m
						-0.2
~						1.0.0
	τ = -1	$\tau = -1$ $\tau = 0$	Infrared $\tau = -1$ $\tau = 0$ $\tau = 0$ $\tau = 1$ \bullet	$\begin{array}{c c} \text{Infrared} \\ \tau = -1 & \tau = 0 & \tau = 1 \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline $	Infrared Green $\tau = -1$ $\tau = 0$ $\tau = 1$ $\tau = -1$ $\tau = 0$ $\tau = -1$ $\tau = 0$	Infrared $\tau = -1$ $\tau = 0$ $\tau = 1$ $\tau = -1$ $\tau = 0$ $\tau = 1$ $\tau = -1$ $\tau = 0$ $\tau = 1$ $\tau $

